logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

已知a,b为正实数,且 +2a+b=16, 则 () .已知a,b为正实数,且 +2a+b=16, 则 () .


题目解答

答案

解析

考查要点:本题主要考查代数变形、不等式应用(如均值不等式、柯西不等式)以及函数极值的求解方法。关键在于将原式进行巧妙变形,引入新变量简化问题,或利用导数法求解复杂表达式的极值。

解题核心思路:

  1. 变形原式:将条件式 $ab + 2a + b = 16$ 变形为 $(a+1)(b+2) = 18$,简化后续分析。
  2. 变量替换:设 $x = a+1$,$y = b+2$,则 $xy = 18$,将问题转化为关于 $x$ 和 $y$ 的极值问题。
  3. 逐项分析:对每个选项分别应用不等式或求导法,验证其正确性。

破题关键点:

  • 选项A、C:利用均值不等式或函数极值求解。
  • 选项B:通过不等式判断最小值,发现实际最小值小于选项值。
  • 选项D:通过导数法求解复杂表达式的最小值。

选项A:$2a + b$ 的最小值为8

  1. 变形原式:由 $(a+1)(b+2) = 18$,设 $x = a+1$,$y = b+2$,则 $xy = 18$。
  2. 表达式转换:$2a + b = 2(x-1) + (y-2) = 2x + y - 4$。
  3. 求极值:需最小化 $2x + y$,由 $y = \frac{18}{x}$,得 $2x + \frac{18}{x}$。求导得极值点 $x = 3$,对应 $y = 6$,此时 $2x + y = 12$,故 $2a + b = 12 - 4 = 8$。最小值为8,正确。

选项B:$\dfrac{1}{a+1} + \dfrac{1}{b+2}$ 的最小值为 $\dfrac{\sqrt{2}}{2}$

  1. 变量替换:设 $x = a+1$,$y = b+2$,则 $xy = 18$,表达式为 $\dfrac{1}{x} + \dfrac{1}{y}$。
  2. 应用不等式:由均值不等式,$\dfrac{1}{x} + \dfrac{1}{y} \geq \dfrac{2}{\sqrt{xy}} = \dfrac{2}{\sqrt{18}} = \dfrac{\sqrt{2}}{3}$,实际最小值为 $\dfrac{\sqrt{2}}{3} < \dfrac{\sqrt{2}}{2}$。错误。

选项C:$ab$ 的最大值为8

  1. 表达式转换:由 $(a+1)(b+2) = 18$,展开得 $ab + 2a + b + 2 = 18$,即 $ab = 16 - 2a - b$。
  2. 极值分析:结合选项A的结果,当 $2a + b = 8$ 时,$ab$ 取得最大值 $8$。正确。

选项D:$b + \dfrac{1}{9-a}$ 的最小值为 $\dfrac{6\sqrt{2}-1}{10}$

  1. 变量替换:由 $(a+1)(b+2) = 18$,得 $b = \dfrac{18}{a+1} - 2$。
  2. 表达式转换:$b + \dfrac{1}{9-a} = \dfrac{18}{a+1} - 2 + \dfrac{1}{9-a}$。
  3. 求导法:设 $f(a) = \dfrac{18}{a+1} - 2 + \dfrac{1}{9-a}$,求导并解得极值点 $a = \dfrac{27\sqrt{2} - 1}{1 + 3\sqrt{2}}$,代入计算得最小值为 $\dfrac{6\sqrt{2}-1}{10}$。正确。

相关问题

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 下列命题中错误的是( )A B C D

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号