题目
(4)lim_(ntoinfty)[(n)/((n+1)^2)+(n)/((n+2)^2)+...+(n)/((n+n)^2)].
(4)$\lim_{n\to\infty}\left[\frac{n}{(n+1)^{2}}+\frac{n}{(n+2)^{2}}+\cdots+\frac{n}{(n+n)^{2}}\right].$
题目解答
答案
将原和式重写为:
\[
\sum_{k=1}^n \frac{n}{(n+k)^2} = \sum_{k=1}^n \frac{1}{n} \cdot \frac{1}{\left(1 + \frac{k}{n}\right)^2}.
\]
此形式为黎曼和,对应定积分:
\[
\int_0^1 \frac{1}{(1+x)^2} \, dx.
\]
计算积分:
\[
\int_0^1 \frac{1}{(1+x)^2} \, dx = \left[ -\frac{1}{1+x} \right]_0^1 = -\frac{1}{2} + 1 = \frac{1}{2}.
\]
**答案:** $\boxed{\frac{1}{2}}$