logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

8.(10.0分)设A_(1),A_(2),...,A_(n),...是事件列,若A_(n)subset A_(n+1),n=1,2,...,A=bigcap_(i=1)^inftyA_(i),则有P(A)=lim_(ntoinfty)P(A_(n)).(判断10分)A. 错误B. 正确

8.(10.0分)设$A_{1},A_{2},\cdots,A_{n},\cdots$是事件列,若$A_{n}\subset A_{n+1},n=1,2,\cdots,A=\bigcap_{i=1}^{\infty}A_{i}$,则有$P(A)=\lim_{n\to\infty}P(A_{n})$. (判断10分)

A. 错误

B. 正确

题目解答

答案

A. 错误

解析

考查要点:本题主要考查概率论中事件列的极限性质,特别是递增事件列的概率极限与交集概率的关系。

解题核心思路:

  1. 明确事件列的包含关系:题目中给出事件列$A_n$是递增的,即$A_n \subset A_{n+1}$,因此所有事件的交集$A = \bigcap_{i=1}^{\infty} A_i$实际上等于最小的事件$A_1$。
  2. 应用概率的连续性定理:对于递增事件列,概率的极限等于并集的概率,而非交集的概率。
  3. 对比命题中的等式:题目中等式$P(A) = \lim_{n \to \infty} P(A_n)$成立的条件是$A$等于并集,但实际$A$是交集(即$A_1$),因此等式不成立。

破题关键点:

  • 理解递增事件列的交集性质:递增事件列的交集退化为第一个事件。
  • 区分并集与交集的概率极限:递增事件列的并集概率极限等于各事件概率的极限,而交集概率则固定为第一个事件的概率。

事件列的包含关系分析
由于$A_n \subset A_{n+1}$,所有事件的交集$A = \bigcap_{i=1}^{\infty} A_i$实际上是$A_1$,因为每个后续事件都包含$A_1$,因此交集无法缩小到比$A_1$更小的范围。

概率的连续性定理应用
根据概率的连续性定理,对于递增事件列,有:
$P\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} P(A_n).$
但题目中的$A$是交集,即$A = A_1$,而$\lim_{n \to \infty} P(A_n)$对应的是并集的概率。除非$A_1$本身等于并集(即所有$A_n$均等于$A_1$),否则$P(A_1) \neq P\left(\bigcup_{i=1}^{\infty} A_i\right)$。

结论
原命题中等式$P(A) = \lim_{n \to \infty} P(A_n)$不成立,因此答案为错误。

相关问题

  • 下列命题中错误的是( )A B C D

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号