logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

练习 (2013, 2,_(3) )设A,B,C均为n阶矩阵,若AB=C且B可逆,则 (A)矩阵C的行向量与矩阵A.的行向量等价. (B.)矩阵C的列向量与矩阵A的列向量等价. (C)矩阵C.的行向量与矩阵B的行向量等价. (D.)矩阵C的列向量与矩阵B的列向量等价.

练习 (2013,$ 2,_{3} $)设A,B,C均为n阶矩阵,若AB=C且B可逆,则 (A)矩阵C的行向量与矩阵
A.的行向量等价. (
B.)矩阵C的列向量与矩阵A的列向量等价. (C)矩阵
C.的行向量与矩阵B的行向量等价. (
D.)矩阵C的列向量与矩阵B的列向量等价.

题目解答

答案

由题意 $AB = C$ 且 $B$ 可逆,得 $A = CB^{-1}$。 1. **列向量关系**: $C$ 的列向量由 $A$ 的列向量线性组合而成(系数为 $B$ 的列向量),反之,$A$ 的列向量也可由 $C$ 的列向量线性组合而成(系数为 $B^{-1}$ 的列向量)。因此,$C$ 的列向量与 $A$ 的列向量等价。 2. **行向量关系**: 转置后得 $B^T A^T = C^T$,由于 $B^T$ 可逆,$A^T$ 的列向量(即 $A$ 的行向量)可由 $C^T$ 的列向量(即 $C$ 的行向量)线性表示,但无法直接得出等价关系。 **结论**:矩阵 $C$ 的列向量与矩阵 $A$ 的列向量等价,正确选项为 $\boxed{B}$。

解析

考查要点:本题主要考查矩阵乘法下向量组的等价关系,以及可逆矩阵在等价关系中的作用。

解题核心思路:

  1. 矩阵等价的本质:两个矩阵的列(或行)向量等价,当且仅当它们可以互相线性表示。
  2. 利用可逆矩阵的性质:若 $B$ 可逆,则 $B$ 的列(行)向量组线性无关,且存在逆矩阵 $B^{-1}$,可建立反向线性组合关系。
  3. 关键推导:由 $AB = C$ 推导出 $A = CB^{-1}$,从而分析列向量间的相互表示关系。

破题关键点:

  • 列向量关系:$C$ 的列向量由 $A$ 的列向量线性组合而成,反之亦然(通过 $B^{-1}$)。
  • 行向量关系:需通过转置分析,但无法直接得出等价结论。

列向量等价性分析

  1. 正向表示:由 $AB = C$,$C$ 的第 $j$ 列为 $A \cdot B$ 的第 $j$ 列,即 $C$ 的列向量是 $A$ 的列向量的线性组合。
  2. 反向表示:由 $A = CB^{-1}$,$A$ 的第 $k$ 列为 $C \cdot B^{-1}$ 的第 $k$ 列,即 $A$ 的列向量是 $C$ 的列向量的线性组合。
    结论:$C$ 的列向量与 $A$ 的列向量等价,对应选项 B。

行向量等价性分析

  1. 转置关系:对 $AB = C$ 转置得 $B^T A^T = C^T$,即 $A^T = (C^T)(B^T)^{-1}$。
  2. 行向量表示:$A$ 的行向量(即 $A^T$ 的列向量)可由 $C$ 的行向量(即 $C^T$ 的列向量)线性组合,但无法反向推导。
    结论:行向量不等价,排除选项 A 和 C。

排除其他选项

  • 选项 D:$C$ 的列向量由 $A$ 的列向量组合而成,与 $B$ 的列向量无直接等价关系,排除。

相关问题

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 下列命题中错误的是( )A B C D

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号