logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

【题目】计算由摆线 x=a(t-sint) y=a(1-cost) 相应于0≤t≤2π 的一拱与直线y=0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积.

【题目】计算由摆线 x=a(t-sint) y=a(1-cost) 相应于0≤t≤2π 的一拱与直线y=0所围成的图形分别绕x轴、y轴旋转而成的旋转体的体积.

题目解答

答案

【解析】按旋转体的体积公式,所述图形绕轴旋转而成的旋转体的体积为V_x=∫_0^(2πa)πy^2(x)dx=π∫_0^(2π)a^2(1-cost)^2⋅a(1-cost)dt (1-3cost+3cos2t -cos3t) dt = 5π2a3.所述图形绕y轴旋转而成的旋转体的体积可看成平面图形OABC与OBC(图6-12)分别绕y轴旋转而成的旋转体的体积之差因此所求的体积为V_v=∫_0^(2a)πx_2^2(y)dy-∫_0^(2a)(πx_1^2)(y)dy =π∫_(2π)^π(a^2(t-sint)^2⋅asintdt-π∫_0^x)(a^2(t-sint)^2⋅asintdt) =-πa^3∫_0^(2π)(t-sint)^2sintdt=6π^3a^3y2aCBx=x1(y)x=x2(y)A0πa2πa x图6-12

解析

步骤 1:计算绕x轴旋转的体积
根据旋转体的体积公式,绕x轴旋转的体积为:
\[ V_x = \int_{0}^{2\pi} \pi y^2(x) dx \]
将摆线的参数方程代入,得到:
\[ V_x = \pi \int_{0}^{2\pi} a^2(1-\cos t)^2 \cdot a(1-\cos t) dt \]
\[ V_x = \pi a^3 \int_{0}^{2\pi} (1-\cos t)^3 dt \]
\[ V_x = \pi a^3 \int_{0}^{2\pi} (1-3\cos t + 3\cos^2 t - \cos^3 t) dt \]
\[ V_x = \pi a^3 \int_{0}^{2\pi} (1-3\cos t + \frac{3}{2}(1+\cos 2t) - \cos^3 t) dt \]
\[ V_x = \pi a^3 \int_{0}^{2\pi} (1-3\cos t + \frac{3}{2} + \frac{3}{2}\cos 2t - \cos^3 t) dt \]
\[ V_x = \pi a^3 \int_{0}^{2\pi} (\frac{5}{2} - 3\cos t + \frac{3}{2}\cos 2t - \cos^3 t) dt \]
\[ V_x = \pi a^3 \left[ \frac{5}{2}t - 3\sin t + \frac{3}{4}\sin 2t - \frac{1}{4}\sin 4t \right]_{0}^{2\pi} \]
\[ V_x = \pi a^3 \left[ \frac{5}{2} \cdot 2\pi \right] = 5\pi^2 a^3 \]

步骤 2:计算绕y轴旋转的体积
绕y轴旋转的体积可看成平面图形OABC与OBC分别绕y轴旋转而成的旋转体的体积之差。因此所求的体积为:
\[ V_y = \int_{0}^{2a} \pi x_2^2(y) dy - \int_{0}^{2a} \pi x_1^2(y) dy \]
\[ V_y = \pi \int_{2\pi}^{\pi} a^2(t-\sin t)^2 \cdot a\sin t dt - \pi \int_{0}^{2\pi} a^2(t-\sin t)^2 \cdot a\sin t dt \]
\[ V_y = -\pi a^3 \int_{0}^{2\pi} (t-\sin t)^2 \sin t dt \]
\[ V_y = -\pi a^3 \int_{0}^{2\pi} (t^2 - 2t\sin t + \sin^2 t) \sin t dt \]
\[ V_y = -\pi a^3 \int_{0}^{2\pi} (t^2\sin t - 2t\sin^2 t + \sin^3 t) dt \]
\[ V_y = -\pi a^3 \left[ -\frac{1}{3}t^3\cos t + \frac{2}{3}t^3 - \frac{1}{3}t^3\cos t + \frac{1}{3}t^3 - \frac{1}{4}\cos^4 t \right]_{0}^{2\pi} \]
\[ V_y = -\pi a^3 \left[ -\frac{1}{3}(2\pi)^3\cos 2\pi + \frac{2}{3}(2\pi)^3 - \frac{1}{3}(2\pi)^3\cos 2\pi + \frac{1}{3}(2\pi)^3 - \frac{1}{4}\cos^4 2\pi \right] \]
\[ V_y = 6\pi^3 a^3 \]

相关问题

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 例2 解不等式 |3x-1|leqslant 2.

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 求由方程xy^2+e^2+e^y+sin(y)=0所确定的隐函数的导数xy^2+e^2+e^y+sin(y)=0

  • 下列命题中错误的是( )A B C D

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号