题目
21.简答题设函数z=z(x,y)方程 4x^2+3y^2+2z^2=1确定,求dz.
21.简答题
设函数$z=z(x,y)$方程$ 4x^{2}+3y^{2}+2z^{2}=1$确定,求$dz$.
题目解答
答案
设 $F(x, y, z) = 4x^2 + 3y^2 + 2z^2 - 1$,则
\[ F_x = 8x, \quad F_y = 6y, \quad F_z = 4z. \]
由隐函数的偏导数公式得
\[ \frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{8x}{4z} = -\frac{2x}{z}, \]
\[ \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{6y}{4z} = -\frac{3y}{2z}. \]
全微分 $dz$ 为
\[ dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = -\frac{2x}{z}dx - \frac{3y}{2z}dy. \]
**答案:**
\[
\boxed{-\frac{2x}{z}dx - \frac{3y}{2z}dy}
\]