题目
五、设圆的直径X在[1,3]上服从均匀分布,求圆面积的数学期望和方差.
五、设圆的直径X在[1,3]上服从均匀分布,求圆面积的数学期望和方差.
题目解答
答案
设圆的直径 $X$ 在 $[1, 3]$ 上服从均匀分布,圆面积 $Y = \frac{\pi X^2}{4}$。
**数学期望:**
\[ E(Y) = E\left(\frac{\pi X^2}{4}\right) = \frac{\pi}{4} E(X^2) \]
其中,
\[ E(X^2) = \frac{b^3 - a^3}{3(b - a)} = \frac{27 - 1}{6} = \frac{13}{3} \]
故
\[ E(Y) = \frac{\pi}{4} \times \frac{13}{3} = \frac{13\pi}{12} \]
**方差:**
\[ D(Y) = E(Y^2) - [E(Y)]^2 \]
\[ E(Y^2) = E\left(\frac{\pi^2 X^4}{16}\right) = \frac{\pi^2}{16} E(X^4) \]
其中,
\[ E(X^4) = \frac{b^5 - a^5}{5(b - a)} = \frac{243 - 1}{10} = \frac{121}{5} \]
故
\[ E(Y^2) = \frac{\pi^2}{16} \times \frac{121}{5} = \frac{121\pi^2}{80} \]
\[ [E(Y)]^2 = \left(\frac{13\pi}{12}\right)^2 = \frac{169\pi^2}{144} \]
\[ D(Y) = \frac{121\pi^2}{80} - \frac{169\pi^2}{144} = \frac{61\pi^2}{180} \]
**答案:**
\[
\boxed{\frac{13\pi}{12}, \frac{61\pi^2}{180}}
\]