logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

小张和小王18:00分别从甲、乙两地同时出发,沿相同道路匀速相向而行。18:20小张到达丙地停留,18:40两人在丙地碰面并均以出发时速度继续行进。18:50小王到达甲地,问小张在几点到达乙地?A. 20:00B. 20:40C. 19:00D. 19:40

小张和小王18:00分别从甲、乙两地同时出发,沿相同道路匀速相向而行。18:20小张到达丙地停留,18:40两人在丙地碰面并均以出发时速度继续行进。18:50小王到达甲地,问小张在几点到达乙地?

A. 20:00

B. 20:40

C. 19:00

D. 19:40

题目解答

答案

A. 20:00

解析

考查要点:本题主要考查相遇问题中的速度、时间、路程关系,以及通过时间点推断运动过程的能力。

解题核心思路:

  1. 确定关键时间点:通过题目中的时间(如18:00出发、18:20小张到丙地、18:40相遇、18:50小王到甲地),建立时间轴。
  2. 分析运动过程:明确两人在不同时间段的运动状态(行走或停留),并利用相遇时路程之和等于总路程的规律建立方程。
  3. 速度关系推导:通过小王从丙到甲的时间,结合相遇前的运动过程,推导小张和小王的速度关系,最终计算小张剩余路程所需时间。

破题关键点:

  • 小王从丙到甲的时间(10分钟)是解题突破口,可推导甲丙段路程与小王速度的关系。
  • 相遇时两人路程之和等于甲乙总路程,结合小张和小王的速度关系,可求出小张后续行程时间。

步骤1:设定变量与基本关系

  • 设小张速度为$v_z$,小王速度为$v_w$,甲乙总路程为$S$。
  • 小张从甲到丙用时20分钟,路程为$20v_z$;小王从乙到丙用时40分钟,路程为$40v_w$。
  • 相遇时,两人路程之和等于总路程$S$,即:
    $20v_z + 40v_w = S \quad \text{(1)}$

步骤2:利用小王后续行程推导总路程

  • 小王从丙到甲用时10分钟,路程为$10v_w$,因此甲丙段路程为$10v_w$。
  • 结合步骤1中甲丙段路程$20v_z = 10v_w$,得:
    $v_z = 0.5v_w \quad \text{(2)}$

步骤3:计算小张剩余路程时间

  • 甲乙总路程$S = 40v_w + 10v_w = 50v_w$(小王全程用时50分钟)。
  • 小张从丙到乙的路程为$S - 20v_z = 50v_w - 20 \times 0.5v_w = 40v_w$。
  • 小张以速度$v_z = 0.5v_w$行驶该路程,所需时间为:
    $\frac{40v_w}{0.5v_w} = 80 \text{分钟}$

步骤4:确定最终到达时间

  • 相遇时间为18:40,小张需再行驶80分钟,即:
    $18:40 + 1\text{小时}20\text{分钟} = 20:00$

相关问题

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)

  • 下列命题中错误的是( )A B C D

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号