logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

甲、乙两艘油轮驶向一个不能同时停泊两艘油轮的码头,它们都将在某日8时至20时抵达码头,甲轮卸完油要1小时,乙轮要2小时,假设毎艘油轮在8时至20时的毎一时刻抵达码头的可能性相同。求: 1.甲、乙两轮都不需要等候空出码头的概率; 2.设A表示甲、乙同一时刻抵达码头,问A是否为不可能事件,并求P(A)。

甲、乙两艘油轮驶向一个不能同时停泊两艘油轮的码头,它们都将在某日8时至20时抵达码头,甲轮卸完油要1小时,乙轮要2小时,假设毎艘油轮在8时至20时的毎一时刻抵达码头的可能性相同。求: 1.甲、乙两轮都不需要等候空出码头的概率; 2.设A表示甲、乙同一时刻抵达码头,问A是否为不可能事件,并求P(A)。

题目解答

答案

(1)设X、Y分别表示甲、乙两轮到达码头的时刻,则X、Y可以取区间[0,12]内的任意一个值,即,而两轮都不需要空出码头(用A表示)的充要条件是:Yndash;Xge;1或Xndash;Yge;2,在平面上建立直角坐标系(如图), 两轮都不需要空出码头的时间如图中阴影部分所示,这是一个几何概率问题,所以 (2)A不是不可能事件,故P(A)=0。

解析

考查要点:本题属于几何概率问题,考查学生对连续型概率模型的理解,以及如何将实际问题转化为几何区域面积比的能力。

解题核心思路:

  1. 建立坐标系:将甲、乙两轮的到达时间分别设为$x$和$y$,在$[0,12]$区间内均匀分布,构建直角坐标系。
  2. 确定不冲突条件:甲、乙不需要等待的条件是两者的到达时间间隔足够覆盖卸油时间,即$|x - y| \geq 1$(甲先到)或$|x - y| \geq 2$(乙先到)。
  3. 几何概率计算:通过计算满足条件的区域面积占总区域面积的比例求解。

破题关键点:

  • 正确划分区域:明确甲、乙卸油时间对时间间隔的要求,画出对应的几何区域。
  • 面积计算技巧:利用三角形、梯形面积公式简化积分计算。

第(1)题

条件分析:
甲、乙两轮不需要等待的条件是:

  • 若甲先到,则乙到达时间至少比甲晚1小时,即$y \geq x + 1$;
  • 若乙先到,则甲到达时间至少比乙晚2小时,即$x \geq y + 2$。

几何区域划分:

  1. 甲先到的区域:$y \geq x + 1$,对应直角坐标系中的一条斜线,下方为无效区域。
  2. 乙先到的区域:$x \geq y + 2$,对应另一条斜线,右侧为无效区域。

面积计算:

  1. 甲先到区域面积:
    当$x$从$0$到$11$时,$y$的范围是$[x+1, 12]$,形成底为$11$、高为$11$的三角形,面积为$\frac{1}{2} \times 11 \times 11 = 60.5$。
  2. 乙先到区域面积:
    当$y$从$0$到$10$时,$x$的范围是$[y+2, 12]$,形成底为$10$、高为$10$的三角形,面积为$\frac{1}{2} \times 10 \times 10 = 50$。
  3. 总面积:$60.5 + 50 = 110.5$。

概率计算:
总区域面积为$12 \times 12 = 144$,概率为$\frac{110.5}{144} = \frac{221}{288}$。

第(2)题

事件性质判断:
甲、乙同一时刻到达($x = y$)在连续型均匀分布中是零概率事件,但并非不可能事件(存在可能性,只是概率为0)。

概率计算:
由于$x$和$y$是连续型变量,$P(x = y) = 0$。

相关问题

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)

  • 下列命题中错误的是( )A B C D

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号