20.设函数f(u)在 (0,+infty ) 内具有二阶导数,且 =f(sqrt ({x)^2+(y)^2}) 满足等式-|||-dfrac ({a)^2z}(a{x)^2}+dfrac ({a)^2z}(a{y)^2}=0.-|||-(1)验证 '(u)+dfrac (f'(u))(u)=0;-|||-(2)若 (1)=0, '(1)=1 求函数f(u)的表达式.

题目解答
答案

解析
题目考察知识和解题思路
本题主要考察多元复合函数的二阶偏导数计算以及可分离变量的微分方程求解,具体思路如下:
(1)验证 $f'(u) + \frac{f''(u)}{u} = 0$
步骤1:换元简化函数
令 $u = \sqrt{x^2 + y^2}$,则 $z = f(u)$ 是关于 $x,y$ 的复合函数。
步骤2:计算一阶偏导数
根据复合函数求导法则:
$\frac{\partial z}{\partial x} = f'(u) \cdot \frac{\partial u}{\partial x} = f'(u) \cdot \frac{x}{\sqrt{x^2 + y^2}} = f'(u) \cdot \frac{x}{u}$
同理:
$\frac{\partial z}{\partial y} = f'(u) \cdot \frac{y}{u}$
步骤3:计算二阶偏导数
对 $\frac{\partial z}{\partial x}$ 再次求导:
$\frac{\partial^2 z}{\partial x^2} = f''(u) \cdot \left(\frac{x}{u}\right)^2 + f'(u) \cdot \frac{u \cdot 1 - x \cdot \frac{x}{u}}{u^2}$
化简得:
$\frac{\partial^2 z}{\partial x^2} = f''(u) \cdot \frac{x^2}{u^2} + f'(u) \cdot \frac{u^2 - x^2}{u^3}$
同理,对 $\frac{\partial z}{\partial y}$ 再次求导:
$\frac{\partial^2 z}{\partial y^2} = f''(u) \cdot \frac{y^2}{u^2} + f'(u) \cdot \frac{u^2 - y^2}{u^3}$
步骤4:叠加二阶偏导数
$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = f''(u) \cdot \frac{x^2 + y^2}{u^2} + f'(u) \cdot \frac{(u^2 - x^2) + (u^2 - y^2)}{u^3}$
因 $u^2 = x^2 + y^2$,代入得:
$= f''(u) \cdot \frac{u^2}{u^2} + f'(u) \cdot \frac{2u^2 - u^2}{u^3} = f''(u) + \frac{f'(u)}{u}$
由题意 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$,故:
$f''(u) + \frac{f'(u)}{u} = 0 \quad \text{(验证完成)}$
(2)求 $f(u)$ 的表达式
步骤1:转化为微分方程
令 $g(u) = f'(u)$,则 $g'(u) = f''(u)$,原方程变为:
$g'(u) + \frac{g(u)}{u} = 0$
这是可分离变量的微分方程,分离变量得:
$\frac{dg}{g} = -\frac{du}{u}$
步骤2:求解微分方程
两边积分:
$\ln|g| = -\ln|u| + C \implies g(u) = \frac{C_1}{u}$
即 $f'(u) = \frac{C_1}{u}$。
步骤3:利用初始条件求常数
由 $f'(1) = 1$:
$1 = \frac{C_1}{1} \implies C_1 = 1 \implies f'(u) = \frac{1}{u}$
再积分得:
$f(u) = \ln u + C_2$
由 $f(1) = 0$:
$0 = \ln 1 + C_2 \implies C_2 = 0$
故 $f(u) = \ln u$。