题目
6.函数 =ln ((x)^2+(y)^2+(z)^2) 在点 M(1,2,-2) 处的梯度 (|)_(M)= __

题目解答
答案

解析
步骤 1:计算偏导数
首先,我们需要计算函数 $u=\ln ({x}^{2}+{y}^{2}+{z}^{2})$ 关于 $x$、$y$ 和 $z$ 的偏导数。根据链式法则,我们有:
$$\frac{\partial u}{\partial x} = \frac{1}{{x}^{2}+{y}^{2}+{z}^{2}} \cdot 2x$$
$$\frac{\partial u}{\partial y} = \frac{1}{{x}^{2}+{y}^{2}+{z}^{2}} \cdot 2y$$
$$\frac{\partial u}{\partial z} = \frac{1}{{x}^{2}+{y}^{2}+{z}^{2}} \cdot 2z$$
步骤 2:计算梯度
函数 $u$ 在点 M(1,2,-2) 处的梯度为:
$$\nabla u|_{M} = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$$
将点 M(1,2,-2) 的坐标代入偏导数中,我们得到:
$$\nabla u|_{M} = \left(\frac{2}{1^2+2^2+(-2)^2}, \frac{4}{1^2+2^2+(-2)^2}, \frac{-4}{1^2+2^2+(-2)^2}\right)$$
$$\nabla u|_{M} = \left(\frac{2}{9}, \frac{4}{9}, \frac{-4}{9}\right)$$
首先,我们需要计算函数 $u=\ln ({x}^{2}+{y}^{2}+{z}^{2})$ 关于 $x$、$y$ 和 $z$ 的偏导数。根据链式法则,我们有:
$$\frac{\partial u}{\partial x} = \frac{1}{{x}^{2}+{y}^{2}+{z}^{2}} \cdot 2x$$
$$\frac{\partial u}{\partial y} = \frac{1}{{x}^{2}+{y}^{2}+{z}^{2}} \cdot 2y$$
$$\frac{\partial u}{\partial z} = \frac{1}{{x}^{2}+{y}^{2}+{z}^{2}} \cdot 2z$$
步骤 2:计算梯度
函数 $u$ 在点 M(1,2,-2) 处的梯度为:
$$\nabla u|_{M} = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)$$
将点 M(1,2,-2) 的坐标代入偏导数中,我们得到:
$$\nabla u|_{M} = \left(\frac{2}{1^2+2^2+(-2)^2}, \frac{4}{1^2+2^2+(-2)^2}, \frac{-4}{1^2+2^2+(-2)^2}\right)$$
$$\nabla u|_{M} = \left(\frac{2}{9}, \frac{4}{9}, \frac{-4}{9}\right)$$