题目
5.设 0le x_(1)le sqrt(c),x_(n+1)=(c(1+x_(n)))/(c+x_(n)),nin Z^+,c>1.证明数列x_{n)}收敛,并求其值.
5.设$ 0\le x_{1}\le \sqrt{c},x_{n+1}=\frac{c(1+x_{n})}{c+x_{n}},n\in Z^{+},c>1.$证明数列$\{x_{n}\}$收敛,并求其值.
题目解答
答案
**证明:**
1. **有界性**:由 $0 \leq x_1 \leq \sqrt{c}$,假设 $0 \leq x_n \leq \sqrt{c}$,则
\[
x_{n+1} = \frac{c(1 + x_n)}{c + x_n} \leq \frac{c(1 + \sqrt{c})}{c + \sqrt{c}} = \sqrt{c}.
\]
由归纳法,对所有 $n$,有 $0 \leq x_n \leq \sqrt{c}$。
2. **单调性**:计算
\[
x_{n+1} - x_n = \frac{c - x_n^2}{c + x_n} \geq 0 \quad (\text{因 } x_n^2 \leq c),
\]
故数列单调递增。
3. **收敛性**:单调有界数列必收敛,设极限为 $L$,则
\[
L = \frac{c(1 + L)}{c + L} \implies L^2 = c \implies L = \sqrt{c}.
\]
**答案:**
\[
\boxed{\sqrt{c}}
\]
解析
步骤 1:证明数列有界性
由 $0 \leq x_1 \leq \sqrt{c}$,假设 $0 \leq x_n \leq \sqrt{c}$,则
\[ x_{n+1} = \frac{c(1 + x_n)}{c + x_n} \leq \frac{c(1 + \sqrt{c})}{c + \sqrt{c}} = \sqrt{c}. \]
由归纳法,对所有 $n$,有 $0 \leq x_n \leq \sqrt{c}$。
步骤 2:证明数列单调性
计算
\[ x_{n+1} - x_n = \frac{c - x_n^2}{c + x_n} \geq 0 \quad (\text{因 } x_n^2 \leq c), \]
故数列单调递增。
步骤 3:证明数列收敛性
单调有界数列必收敛,设极限为 $L$,则
\[ L = \frac{c(1 + L)}{c + L} \implies L^2 = c \implies L = \sqrt{c}. \]
由 $0 \leq x_1 \leq \sqrt{c}$,假设 $0 \leq x_n \leq \sqrt{c}$,则
\[ x_{n+1} = \frac{c(1 + x_n)}{c + x_n} \leq \frac{c(1 + \sqrt{c})}{c + \sqrt{c}} = \sqrt{c}. \]
由归纳法,对所有 $n$,有 $0 \leq x_n \leq \sqrt{c}$。
步骤 2:证明数列单调性
计算
\[ x_{n+1} - x_n = \frac{c - x_n^2}{c + x_n} \geq 0 \quad (\text{因 } x_n^2 \leq c), \]
故数列单调递增。
步骤 3:证明数列收敛性
单调有界数列必收敛,设极限为 $L$,则
\[ L = \frac{c(1 + L)}{c + L} \implies L^2 = c \implies L = \sqrt{c}. \]