题目
10.设周期为2π的函数f(x)在 [ -pi ,pi ] 上的Fourier系数为a,和bn,求下列函数的Fourier系数an-|||-和bn:-|||-(1) (x)=f(-x);-|||-(2) h(x)=f(x+C) (C是常数);-|||-(3) (x)=dfrac (1)(pi )(int )_(-pi )^nf(t)f(x-t)dt (假定积分顺序可以交换).

题目解答
答案

解析
步骤 1:计算g(x)=f(-x)的Fourier系数
根据Fourier系数的定义,我们有:
${a}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x)\cos nx dx$
${b}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x)\sin nx dx$
对于g(x)=f(-x),我们有:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(-x)\cos nx dx$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(-x)\sin nx dx$
通过变量替换u=-x,我们得到:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{\pi }^{-\pi }f(u)\cos (-nu) (-du) = {a}_{n}$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{\pi }^{-\pi }f(u)\sin (-nu) (-du) = -{b}_{n}$
步骤 2:计算h(x)=f(x+C)的Fourier系数
对于h(x)=f(x+C),我们有:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x+C)\cos nx dx$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x+C)\sin nx dx$
通过变量替换u=x+C,我们得到:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi +C}^{\pi +C}f(u)\cos n(u-C) du$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi +C}^{\pi +C}f(u)\sin n(u-C) du$
利用三角函数的和差公式,我们得到:
${\hat {a}}_{n}={a}_{n}\cos nC+{b}_{n}\sin nC$
${\hat {b}}_{n}={b}_{n}\cos nC-{a}_{n}\sin nC$
步骤 3:计算$F(x)=\dfrac {1}{\pi }{\int }_{-\pi }^{n}f(t)f(x-t)dt$的Fourier系数
对于$F(x)=\dfrac {1}{\pi }{\int }_{-\pi }^{n}f(t)f(x-t)dt$,我们有:
${\hat {a}}_{0}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }F(x)dx$
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }F(x)\cos nx dx$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }F(x)\sin nx dx$
利用Fourier系数的定义和积分顺序可以交换的条件,我们得到:
${\hat {a}}_{0}={{a}_{0}}^{2}$
${\hat {a}}_{n}={{a}_{n}}^{2}-{{b}_{n}}^{2}$
${\hat {b}}_{n}=2{a}_{n}{b}_{n}$
根据Fourier系数的定义,我们有:
${a}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x)\cos nx dx$
${b}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x)\sin nx dx$
对于g(x)=f(-x),我们有:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(-x)\cos nx dx$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(-x)\sin nx dx$
通过变量替换u=-x,我们得到:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{\pi }^{-\pi }f(u)\cos (-nu) (-du) = {a}_{n}$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{\pi }^{-\pi }f(u)\sin (-nu) (-du) = -{b}_{n}$
步骤 2:计算h(x)=f(x+C)的Fourier系数
对于h(x)=f(x+C),我们有:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x+C)\cos nx dx$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }f(x+C)\sin nx dx$
通过变量替换u=x+C,我们得到:
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi +C}^{\pi +C}f(u)\cos n(u-C) du$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi +C}^{\pi +C}f(u)\sin n(u-C) du$
利用三角函数的和差公式,我们得到:
${\hat {a}}_{n}={a}_{n}\cos nC+{b}_{n}\sin nC$
${\hat {b}}_{n}={b}_{n}\cos nC-{a}_{n}\sin nC$
步骤 3:计算$F(x)=\dfrac {1}{\pi }{\int }_{-\pi }^{n}f(t)f(x-t)dt$的Fourier系数
对于$F(x)=\dfrac {1}{\pi }{\int }_{-\pi }^{n}f(t)f(x-t)dt$,我们有:
${\hat {a}}_{0}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }F(x)dx$
${\hat {a}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }F(x)\cos nx dx$
${\hat {b}}_{n}=\dfrac {1}{\pi }{\int }_{-\pi }^{\pi }F(x)\sin nx dx$
利用Fourier系数的定义和积分顺序可以交换的条件,我们得到:
${\hat {a}}_{0}={{a}_{0}}^{2}$
${\hat {a}}_{n}={{a}_{n}}^{2}-{{b}_{n}}^{2}$
${\hat {b}}_{n}=2{a}_{n}{b}_{n}$