logonew chat icon top
  • icon-chaticon-chat-active搜题/提问
    new chat icon
    新建会话
  • icon-calculatoricon-calculator-active计算器
  • icon-subjecticon-subject-active学科题目
  • icon-pluginicon-plugin-active浏览器插件
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
recent chat icon
历史记录
首页
/
数学
题目

设Z1,Z2,Z3三点适合条件:Z1+Z2+Z3=0及|Z1|=|Z2|=|Z3|=1试证明Z1.Z2.Z3是内接于单位圆周|Z|=1的 正三角形的顶点.

设Z1,Z2,Z3三点适合条件:Z1+Z2+Z3=0及|Z1|=|Z2|=|Z3|=1试证明Z1.Z2.Z3是内接于单位圆周|Z|=1的 正三角形的顶点.

题目解答

答案

我有一个纯复数的方法,晚上来写
------
关键两点
1、共扼复数的运用技巧,实现纯复数推理,而不借重于几何直观或者解析几何化.以下我们用Z'表示Z的共扼复数.
2、单位圆上的三个不同的复数点均布的判据,用复数表示
判据1:Z₁/Z₂=Z₂/Z₃=Z₃/Z₁
判据2:满足同一个分圆方程:Z³=c,其中|c|=1
已知:Z₁+ Z₂+ Z₃= 0 ------(1)
Z₁Z'₁= Z₂Z'₂= Z₃Z'₃=1 ------(2)
(2)就表示Z₁, Z₂, Z₃在单位圆上,因单位圆上复数与其共扼复数互为倒数.所以判据1也可以写为Z₁Z'₂=Z₂Z'₃=Z₃Z'₁
证明:由(1)取共扼复数得
Z'₁+ Z'₂+ Z'₃= 0 ------(1')
(1)×Z'₂得Z₁Z'₂+ Z'₂Z₃+1=0 ------(3)
(1')×Z₃得Z'₁Z₃+ Z'₂Z₃+1=0 ------(4)
比较(3)和(4)式得Z₁Z'₂=Z₃Z'₁------(5)
轮换对称地可得Z₃Z'₁=Z₂Z'₃
易知Z₁, Z₂, Z₃不全相等,那么按判据1可知它们在单位圆上均布.
又:由(5)式可得Z²₁=Z₂Z₃,故Z³₁=Z₁Z₂Z₃
令c=Z₁Z₂Z₃,即Z₁满足方程Z³=c
对称地,Z₂和Z₃亦满足方程Z³=c
故亦可按判据2断定Z₁, Z₂, Z₃在单位圆上均布.
要说大学知识,就算这分圆方程了(高中没学)

解析

考查要点:本题主要考查复数在几何中的应用,特别是单位圆上复数的对称性及正三角形的复数判据。关键在于利用复数的代数运算和共轭性质,结合对称性条件推导几何结论。

解题核心思路:

  1. 利用共轭复数的性质:由条件$|Z_i|=1$可知,$Z_i' = \frac{1}{Z_i}$,这是后续推导的基础。
  2. 构造对称关系:通过对原方程取共轭并进行代数组合,得到复数之间的比例关系,从而证明三点均匀分布。
  3. 分圆方程的应用:若三点满足同一三次方程$Z^3 = c$($|c|=1$),则它们必构成正三角形。

破题关键点:

  • 关键等式推导:通过原方程与共轭方程的组合,得到$Z_1Z_2' = Z_3Z_1'$等对称关系。
  • 判据选择:选择比例关系或分圆方程作为正三角形的判据,简化证明过程。

步骤1:对原方程取共轭

已知$Z_1 + Z_2 + Z_3 = 0$,两边取共轭得:
$Z_1' + Z_2' + Z_3' = 0 \quad \text{(1')}$

步骤2:构造方程组合

将原方程乘以$Z_2'$:
$Z_1Z_2' + Z_2Z_2' + Z_3Z_2' = 0$
因$|Z_2|=1$,故$Z_2Z_2' = 1$,代入得:
$Z_1Z_2' + 1 + Z_3Z_2' = 0 \quad \text{(3)}$

将共轭方程(1')乘以$Z_3$:
$Z_1'Z_3 + Z_2'Z_3 + Z_3'Z_3 = 0$
同理,$Z_3'Z_3 = 1$,得:
$Z_1'Z_3 + Z_2'Z_3 + 1 = 0 \quad \text{(4)}$

步骤3:比较方程(3)与(4)

观察方程(3)和(4),发现$Z_2'Z_3$是公共项,因此可得:
$Z_1Z_2' = Z_1'Z_3 \quad \text{(5)}$

步骤4:轮换对称性推导

将方程(5)轮换变量,得到:
$Z_3Z_1' = Z_2Z_3' \quad \text{和} \quad Z_2Z_3' = Z_1Z_2'$
这表明三个复数满足比例关系:
$\frac{Z_1}{Z_2} = \frac{Z_2}{Z_3} = \frac{Z_3}{Z_1}$

步骤5:分圆方程验证

由方程(5)可推导出$Z_1^2 = Z_2Z_3$,代入原方程$Z_1 + Z_2 + Z_3 = 0$,得:
$Z_1^3 = Z_1Z_2Z_3$
令$c = Z_1Z_2Z_3$,则$Z_1, Z_2, Z_3$均为方程$Z^3 = c$的根。因$|c|=1$,该方程的根在单位圆上均匀分布,故三点构成正三角形。

相关问题

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 例2 解不等式 |3x-1|leqslant 2.

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 请输入答案。3+5=( )

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 下列命题中错误的是( )A B C D

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • ‎公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号