logonew chat icon top
  • icon-chaticon-chat-active搜题/提问
    new chat icon
    新建会话
  • icon-calculatoricon-calculator-active计算器
  • icon-subjecticon-subject-active学科题目
  • icon-pluginicon-plugin-active浏览器插件
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
recent chat icon
历史记录
首页
/
数学
题目

设 I = iint_(D) (x^2 + 4y^2 + 9), dsigma,其中 D = (x, y)mid x^2 + y^2 leq 4,则估计 I 的范围() A. [4pi, 9pi]B. [16pi, 36pi]C. [9pi, 25pi]D. [36pi, 100pi]

设 $I = \iint_{D} (x^2 + 4y^2 + 9)\, d\sigma$,其中 $D = \{(x, y)\mid x^2 + y^2 \leq 4\}$,则估计 $I$ 的范围()

  • A. $[4\pi, 9\pi]$
  • B. $[16\pi, 36\pi]$
  • C. $[9\pi, 25\pi]$
  • D. $[36\pi, 100\pi]$

题目解答

答案

函数 $ f(x, y) = x^2 + 4y^2 + 9 $ 在区域 $ D: x^2 + y^2 \leq 4 $ 内的最小值和最大值分别为: - 最小值:在原点 $ (0,0) $ 处,$ f(0,0) = 9 $。 - 最大值:在边界 $ x^2 + y^2 = 4 $ 上,令 $ x = 2\cos\theta $,$ y = 2\sin\theta $,则 \[ f(2\cos\theta, 2\sin\theta) = 4\cos^2\theta + 16\sin^2\theta + 9 = 25 - 12\cos^2\theta \in [13, 25]. \] 故最大值为 25。 区域 $ D $ 的面积为 $ 4\pi $。由二重积分性质,得 \[ 9 \cdot 4\pi \leq I \leq 25 \cdot 4\pi \implies 36\pi \leq I \leq 100\pi. \] 答案:$\boxed{D}$。

解析

考查要点:本题主要考查二重积分的估计方法,涉及利用被积函数在积分区域内的最小值和最大值来确定积分范围。

解题核心思路:

  1. 确定被积函数的极值:在积分区域$D$内找到被积函数$f(x, y) = x^2 + 4y^2 + 9$的最小值$m$和最大值$M$。
  2. 应用积分性质:根据二重积分的性质,积分$I$的范围为$[m \cdot S_D, M \cdot S_D]$,其中$S_D$是区域$D$的面积。

破题关键点:

  • 极值分析:通过求偏导数找到内部临界点,并结合边界条件确定极值。
  • 边界参数化:利用极坐标参数化边界$x^2 + y^2 = 4$,简化被积函数的表达式。

1. 求被积函数的最小值和最大值

  • 内部临界点:
    计算偏导数$\frac{\partial f}{\partial x} = 2x$,$\frac{\partial f}{\partial y} = 8y$,令偏导数为零得临界点$(0, 0)$,此时$f(0, 0) = 9$。

  • 边界极值:
    在边界$x^2 + y^2 = 4$上,设$x = 2\cos\theta$,$y = 2\sin\theta$,代入得:
    $f(2\cos\theta, 2\sin\theta) = 4\cos^2\theta + 16\sin^2\theta + 9 = 25 - 12\cos^2\theta$
    由于$\cos^2\theta \in [0, 1]$,故$f$的取值范围为$[13, 25]$,即最大值为$25$,最小值为$13$。

  • 综合极值:
    区域内最小值为$f(0, 0) = 9$,最大值为边界上的$25$。

2. 计算积分范围

  • 区域面积:$D$是半径为$2$的圆,面积$S_D = 4\pi$。
  • 积分范围:
    $9 \cdot 4\pi \leq I \leq 25 \cdot 4\pi \implies 36\pi \leq I \leq 100\pi$

相关问题

  • 已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );

  • 3. 求极限 lim _(xarrow 0)dfrac (({e)^(x^2-1))}(xln (1-6x))=

  • 判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • ‎公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))

  • 十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21

  • 求定积分(int )_(0)^1((3x-2))^4dx

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234; (2)4132;(3)3421; (4)2413;(5)13 ... (2n-1)24 ... (2n); (6)13 ... (2n-1)(2n)(2n-2) ... 2.

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市天河区黄村大观公园路10号3N2
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号