题目
9.(2025·全国一卷·高考真题)设数列(a_{n)}满足a_(1)=3,(a_(n+1))/(n)=(a_(n))/(n+1)+(1)/(n(n+1))(1)证明:(na_{n)}为等差数列;(2)设f(x)=a_(1)x+a_(2)x^2+L+a_(m)x^m,求f'(-2).
9.(2025·全国一卷·高考真题)设数列${a_{n}}$满足$a_{1}=3,\frac{a_{n+1}}{n}=\frac{a_{n}}{n+1}+\frac{1}{n(n+1)}$
(1)证明:${na_{n}}$为等差数列;(2)设$f(x)=a_{1}x+a_{2}x^{2}+L+a_{m}x^{m}$,求f'(-2).
题目解答
答案
(1) **证明:**
由已知条件,两边乘以 $n(n+1)$ 得
$$
(n+1)a_{n+1} = na_n + 1 \implies (n+1)a_{n+1} - na_n = 1.
$$
令 $b_n = na_n$,则 $b_{n+1} - b_n = 1$,
故 $\{b_n\}$ 是以 $b_1 = 3$ 为首项,1 为公差的等差数列。
(2) **求 $f'(-2)$:**
由 $b_n = 3 + (n-1) \cdot 1 = n + 2$,得 $a_n = \frac{n+2}{n}$。
则
$$
f(x) = \sum_{k=1}^m a_k x^k, \quad f'(x) = \sum_{k=1}^m k a_k x^{k-1} = \sum_{k=1}^m (k+2) x^{k-1}.
$$
代入 $x = -2$,
$$
f'(-2) = \sum_{k=1}^m (k+2)(-2)^{k-1} = \frac{7}{9} - \frac{(3m+7)(-2)^m}{9}.
$$
**答案:**
$$
\boxed{\frac{7}{9} - \frac{(3m+7)(-2)^m}{9}}
$$