题目
34 (1995, - (1) 题, 3分) 设 y = cos(x^2) sin^2 (1)/(x), 则 y' = _.
34 (1995, - (1) 题, 3分) 设 $y = \cos(x^2) \sin^2 \frac{1}{x}$, 则 $y' = \_.$
题目解答
答案
设 $ u = \cos(x^2) $,$ v = \sin^2 \frac{1}{x} $,则 $ y = uv $。
由乘积法则得:
\[ y' = u'v + uv' \]
计算导数:
\[ u' = -2x \sin(x^2) \]
\[ v' = -\frac{2 \sin \frac{1}{x} \cos \frac{1}{x}}{x^2} = -\frac{\sin \frac{2}{x}}{x^2} \]
代入得:
\[ y' = -2x \sin(x^2) \sin^2 \frac{1}{x} - \frac{\cos(x^2) \sin \frac{2}{x}}{x^2} \]
**答案:**
\[
\boxed{-2x \sin(x^2) \sin^2 \frac{1}{x} - \frac{\cos(x^2) \sin \frac{2}{x}}{x^2}}
\]
解析
步骤 1:定义函数
设 $ u = \cos(x^2) $,$ v = \sin^2 \frac{1}{x} $,则 $ y = uv $。
步骤 2:应用乘积法则
由乘积法则得:\[ y' = u'v + uv' \]
步骤 3:计算导数
计算 $ u $ 的导数:\[ u' = -2x \sin(x^2) \]
计算 $ v $ 的导数:\[ v' = -\frac{2 \sin \frac{1}{x} \cos \frac{1}{x}}{x^2} = -\frac{\sin \frac{2}{x}}{x^2} \]
步骤 4:代入导数
代入得:\[ y' = -2x \sin(x^2) \sin^2 \frac{1}{x} - \frac{\cos(x^2) \sin \frac{2}{x}}{x^2} \]
设 $ u = \cos(x^2) $,$ v = \sin^2 \frac{1}{x} $,则 $ y = uv $。
步骤 2:应用乘积法则
由乘积法则得:\[ y' = u'v + uv' \]
步骤 3:计算导数
计算 $ u $ 的导数:\[ u' = -2x \sin(x^2) \]
计算 $ v $ 的导数:\[ v' = -\frac{2 \sin \frac{1}{x} \cos \frac{1}{x}}{x^2} = -\frac{\sin \frac{2}{x}}{x^2} \]
步骤 4:代入导数
代入得:\[ y' = -2x \sin(x^2) \sin^2 \frac{1}{x} - \frac{\cos(x^2) \sin \frac{2}{x}}{x^2} \]