题目
设Sigma为抛物面z=(x^2+y^2)/(2)(0 leq z leq 2),取下侧,则曲面积分int int_(Sigma) 4zrdydz - 2zdzdx + (1 - z^2)dx dy = ( ). A)-12pi B)(32)/(3)pi C)12pi D)(68)/(3)pi
设$\Sigma$为抛物面$z=\frac{x^2+y^2}{2}(0 \leq z \leq 2)$,取下侧,则曲面积分$\int \int_{\Sigma} 4zrdydz - 2zdzdx + (1 - z^2)dx dy = (\quad)$.
A)$-12\pi$
B)$\frac{32}{3}\pi$
C)$12\pi$
D)$\frac{68}{3}\pi$
题目解答
答案
将曲面 $\Sigma$ 扩展为闭合曲面,添加平面 $\Sigma_1: z=2$(上侧),利用高斯公式计算闭合曲面的通量。
1. **计算散度**:
\[
\nabla \cdot \mathbf{F} = 4z + 0 - 2z = 2z
\]
2. **三重积分**:
在柱坐标系中,积分区域为 $0 \leq \theta \leq 2\pi$,$0 \leq r \leq \sqrt{2z}$,$0 \leq z \leq 2$,
\[
\iiint_{\Omega} 2z \, dV = \int_0^{2\pi} \int_0^2 \int_0^{\sqrt{2z}} 2zr \, dr \, dz \, d\theta = \frac{32\pi}{3}
\]
3. **平面 $\Sigma_1$ 上的积分**:
\[
\iint_{\Sigma_1} (1-z^2) \, dS = -3 \times 4\pi = -12\pi
\]
4. **总积分**:
\[
\iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS = \frac{32\pi}{3} - (-12\pi) = \frac{68\pi}{3}
\]
答案:$\boxed{D}$
解析
步骤 1:计算散度
首先,我们需要计算向量场 $\mathbf{F} = (4zr, -2z, 1 - z^2)$ 的散度。根据散度的定义,我们有:
\[ \nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(4zr) + \frac{\partial}{\partial y}(-2z) + \frac{\partial}{\partial z}(1 - z^2) \]
由于 $r = \sqrt{x^2 + y^2}$,则 $\frac{\partial}{\partial x}(4zr) = 4z \frac{x}{r}$,$\frac{\partial}{\partial y}(4zr) = 4z \frac{y}{r}$,因此:
\[ \nabla \cdot \mathbf{F} = 4z \frac{x}{r} + 4z \frac{y}{r} + 0 - 2z = 4z \frac{x^2 + y^2}{r^2} - 2z = 4z - 2z = 2z \]
步骤 2:三重积分
接下来,我们利用高斯公式计算闭合曲面的通量。在柱坐标系中,积分区域为 $0 \leq \theta \leq 2\pi$,$0 \leq r \leq \sqrt{2z}$,$0 \leq z \leq 2$,则:
\[ \iiint_{\Omega} 2z \, dV = \int_0^{2\pi} \int_0^2 \int_0^{\sqrt{2z}} 2zr \, dr \, dz \, d\theta \]
\[ = \int_0^{2\pi} \int_0^2 2z \left[ \frac{r^2}{2} \right]_0^{\sqrt{2z}} dz \, d\theta = \int_0^{2\pi} \int_0^2 2z \cdot z dz \, d\theta = \int_0^{2\pi} \int_0^2 2z^2 dz \, d\theta \]
\[ = \int_0^{2\pi} \left[ \frac{2z^3}{3} \right]_0^2 d\theta = \int_0^{2\pi} \frac{16}{3} d\theta = \frac{32\pi}{3} \]
步骤 3:平面 $\Sigma_1$ 上的积分
平面 $\Sigma_1: z=2$(上侧),则:
\[ \iint_{\Sigma_1} (1-z^2) \, dS = \iint_{\Sigma_1} (1-4) \, dS = -3 \times 4\pi = -12\pi \]
步骤 4:总积分
最后,我们计算总积分:
\[ \iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS = \frac{32\pi}{3} - (-12\pi) = \frac{68\pi}{3} \]
首先,我们需要计算向量场 $\mathbf{F} = (4zr, -2z, 1 - z^2)$ 的散度。根据散度的定义,我们有:
\[ \nabla \cdot \mathbf{F} = \frac{\partial}{\partial x}(4zr) + \frac{\partial}{\partial y}(-2z) + \frac{\partial}{\partial z}(1 - z^2) \]
由于 $r = \sqrt{x^2 + y^2}$,则 $\frac{\partial}{\partial x}(4zr) = 4z \frac{x}{r}$,$\frac{\partial}{\partial y}(4zr) = 4z \frac{y}{r}$,因此:
\[ \nabla \cdot \mathbf{F} = 4z \frac{x}{r} + 4z \frac{y}{r} + 0 - 2z = 4z \frac{x^2 + y^2}{r^2} - 2z = 4z - 2z = 2z \]
步骤 2:三重积分
接下来,我们利用高斯公式计算闭合曲面的通量。在柱坐标系中,积分区域为 $0 \leq \theta \leq 2\pi$,$0 \leq r \leq \sqrt{2z}$,$0 \leq z \leq 2$,则:
\[ \iiint_{\Omega} 2z \, dV = \int_0^{2\pi} \int_0^2 \int_0^{\sqrt{2z}} 2zr \, dr \, dz \, d\theta \]
\[ = \int_0^{2\pi} \int_0^2 2z \left[ \frac{r^2}{2} \right]_0^{\sqrt{2z}} dz \, d\theta = \int_0^{2\pi} \int_0^2 2z \cdot z dz \, d\theta = \int_0^{2\pi} \int_0^2 2z^2 dz \, d\theta \]
\[ = \int_0^{2\pi} \left[ \frac{2z^3}{3} \right]_0^2 d\theta = \int_0^{2\pi} \frac{16}{3} d\theta = \frac{32\pi}{3} \]
步骤 3:平面 $\Sigma_1$ 上的积分
平面 $\Sigma_1: z=2$(上侧),则:
\[ \iint_{\Sigma_1} (1-z^2) \, dS = \iint_{\Sigma_1} (1-4) \, dS = -3 \times 4\pi = -12\pi \]
步骤 4:总积分
最后,我们计算总积分:
\[ \iint_{\Sigma} \mathbf{F} \cdot \mathbf{n} \, dS = \frac{32\pi}{3} - (-12\pi) = \frac{68\pi}{3} \]