题目
lim _(xarrow 0)((dfrac {1+{2)^x}(2))}^dfrac (1{x)}= __

题目解答
答案

解析
步骤 1:定义函数
记 $f(x)=\dfrac {1}{x}\ln (\dfrac {1+{2}^{x}}{2})$ ,原式 $=\lim _{x\rightarrow 0}{e}^{f(x)}$ $=exp(\lim _{x\rightarrow 0}f(x))$.
步骤 2:计算极限
$\lim _{x\rightarrow 0}f(x)=\lim _{x\rightarrow 0}\dfrac {\dfrac {1+{2}^{x}-1}{2}}-x}{x}$ $=\lim _{x\rightarrow 0}\dfrac {{2}^{x}-1}{2x}$ $=\lim _{x\rightarrow 0}\dfrac {x\ln 2}{2x}$ $=\dfrac {\ln 2}{2}$.
步骤 3:求解原式
故:原式 $=exp(\dfrac {\ln 2}{2})=\sqrt {2}$.
记 $f(x)=\dfrac {1}{x}\ln (\dfrac {1+{2}^{x}}{2})$ ,原式 $=\lim _{x\rightarrow 0}{e}^{f(x)}$ $=exp(\lim _{x\rightarrow 0}f(x))$.
步骤 2:计算极限
$\lim _{x\rightarrow 0}f(x)=\lim _{x\rightarrow 0}\dfrac {\dfrac {1+{2}^{x}-1}{2}}-x}{x}$ $=\lim _{x\rightarrow 0}\dfrac {{2}^{x}-1}{2x}$ $=\lim _{x\rightarrow 0}\dfrac {x\ln 2}{2x}$ $=\dfrac {\ln 2}{2}$.
步骤 3:求解原式
故:原式 $=exp(\dfrac {\ln 2}{2})=\sqrt {2}$.