题目
设函数=f(√x^2+ y^2),其中=f(√x^2+ y^2)当=f(√x^2+ y^2)时具有二阶连续导数,并且满足=f(√x^2+ y^2),平面区域=f(√x^2+ y^2),求二重积分。
设函数,其中
当
时具有二阶连续导数,并且满足
,平面区域
,求二重积分。
题目解答
答案
∵本题所求二重积分为
∴。
∵平面区域
∴
故此,本题的二重积分为
解析
步骤 1:确定二阶偏导数
首先,我们确定函数$z=f(\sqrt {{x}^{2}+{y}^{2}})$的二阶偏导数。设$p=\sqrt {{x}^{2}+{y}^{2}}$,则$z=f(p)$。根据链式法则,我们有:
$$\dfrac {\partial z}{\partial x}=\dfrac {df}{dp}\cdot \dfrac {\partial p}{\partial x}=\dfrac {df}{dp}\cdot \dfrac {x}{\sqrt {{x}^{2}+{y}^{2}}}$$
$$\dfrac {\partial z}{\partial y}=\dfrac {df}{dp}\cdot \dfrac {\partial p}{\partial y}=\dfrac {df}{dp}\cdot \dfrac {y}{\sqrt {{x}^{2}+{y}^{2}}}$$
进一步求二阶偏导数:
$$\dfrac {{\partial }^{2}z}{\partial {x}^{2}}=\dfrac {d^{2}f}{dp^{2}}\cdot \dfrac {{x}^{2}}{{x}^{2}+{y}^{2}}+\dfrac {df}{dp}\cdot \dfrac {{y}^{2}-{x}^{2}}{{({x}^{2}+{y}^{2})}^{3/2}}$$
$$\dfrac {{\partial }^{2}z}{\partial {y}^{2}}=\dfrac {d^{2}f}{dp^{2}}\cdot \dfrac {{y}^{2}}{{x}^{2}+{y}^{2}}+\dfrac {df}{dp}\cdot \dfrac {{x}^{2}-{y}^{2}}{{({x}^{2}+{y}^{2})}^{3/2}}$$
步骤 2:求和并简化
将上述二阶偏导数相加,得到:
$$\dfrac {{\partial }^{2}z}{\partial {x}^{2}}+\dfrac {{\partial }^{2}z}{\partial {y}^{2}}=\dfrac {d^{2}f}{dp^{2}}+\dfrac {df}{dp}\cdot \dfrac {1}{p}$$
根据题目条件,我们有:
$$\dfrac {d^{2}f}{dp^{2}}+\dfrac {df}{dp}\cdot \dfrac {1}{p}={e}^{-{x}^{2}-{y}^{2}}$$
步骤 3:求解二重积分
根据题目条件,我们要求的二重积分为:
$$\iint {e}^{-{x}^{2}-{y}^{2}}dxdy$$
在极坐标系下,$x=r\cos \theta$,$y=r\sin \theta$,$dxdy=rdrd\theta$,则积分变为:
$$\int_{0}^{2\pi }\int_{0}^{1}{e}^{-{r}^{2}}rdrd\theta$$
步骤 4:计算积分
计算上述积分,我们有:
$$\int_{0}^{2\pi }\int_{0}^{1}{e}^{-{r}^{2}}rdrd\theta =\int_{0}^{2\pi }\left[-\dfrac {1}{2}{e}^{-{r}^{2}}\right]_{0}^{1}d\theta =\int_{0}^{2\pi }\left(-\dfrac {1}{2}{e}^{-1}+\dfrac {1}{2}\right)d\theta =\pi \left(1-\dfrac {1}{e}\right)$$
首先,我们确定函数$z=f(\sqrt {{x}^{2}+{y}^{2}})$的二阶偏导数。设$p=\sqrt {{x}^{2}+{y}^{2}}$,则$z=f(p)$。根据链式法则,我们有:
$$\dfrac {\partial z}{\partial x}=\dfrac {df}{dp}\cdot \dfrac {\partial p}{\partial x}=\dfrac {df}{dp}\cdot \dfrac {x}{\sqrt {{x}^{2}+{y}^{2}}}$$
$$\dfrac {\partial z}{\partial y}=\dfrac {df}{dp}\cdot \dfrac {\partial p}{\partial y}=\dfrac {df}{dp}\cdot \dfrac {y}{\sqrt {{x}^{2}+{y}^{2}}}$$
进一步求二阶偏导数:
$$\dfrac {{\partial }^{2}z}{\partial {x}^{2}}=\dfrac {d^{2}f}{dp^{2}}\cdot \dfrac {{x}^{2}}{{x}^{2}+{y}^{2}}+\dfrac {df}{dp}\cdot \dfrac {{y}^{2}-{x}^{2}}{{({x}^{2}+{y}^{2})}^{3/2}}$$
$$\dfrac {{\partial }^{2}z}{\partial {y}^{2}}=\dfrac {d^{2}f}{dp^{2}}\cdot \dfrac {{y}^{2}}{{x}^{2}+{y}^{2}}+\dfrac {df}{dp}\cdot \dfrac {{x}^{2}-{y}^{2}}{{({x}^{2}+{y}^{2})}^{3/2}}$$
步骤 2:求和并简化
将上述二阶偏导数相加,得到:
$$\dfrac {{\partial }^{2}z}{\partial {x}^{2}}+\dfrac {{\partial }^{2}z}{\partial {y}^{2}}=\dfrac {d^{2}f}{dp^{2}}+\dfrac {df}{dp}\cdot \dfrac {1}{p}$$
根据题目条件,我们有:
$$\dfrac {d^{2}f}{dp^{2}}+\dfrac {df}{dp}\cdot \dfrac {1}{p}={e}^{-{x}^{2}-{y}^{2}}$$
步骤 3:求解二重积分
根据题目条件,我们要求的二重积分为:
$$\iint {e}^{-{x}^{2}-{y}^{2}}dxdy$$
在极坐标系下,$x=r\cos \theta$,$y=r\sin \theta$,$dxdy=rdrd\theta$,则积分变为:
$$\int_{0}^{2\pi }\int_{0}^{1}{e}^{-{r}^{2}}rdrd\theta$$
步骤 4:计算积分
计算上述积分,我们有:
$$\int_{0}^{2\pi }\int_{0}^{1}{e}^{-{r}^{2}}rdrd\theta =\int_{0}^{2\pi }\left[-\dfrac {1}{2}{e}^{-{r}^{2}}\right]_{0}^{1}d\theta =\int_{0}^{2\pi }\left(-\dfrac {1}{2}{e}^{-1}+\dfrac {1}{2}\right)d\theta =\pi \left(1-\dfrac {1}{e}\right)$$