题目
2.设z=u^2ln v,而u=(x)/(y),v=3x-2y,求Z_(x),Z_(y).
2.设$z=u^{2}\ln v$,而$u=\frac{x}{y}$,$v=3x-2y$,求$Z_{x}$,$Z_{y}$.
题目解答
答案
设 $ z = u^2 \ln v $,其中 $ u = \frac{x}{y} $,$ v = 3x - 2y $。利用链式法则求偏导数:
1. **计算 $ z_x $**
\[
z_x = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x} = 2u \ln v \cdot \frac{1}{y} + \frac{u^2}{v} \cdot 3
\]
代入 $ u $ 和 $ v $:
\[
z_x = \frac{2x}{y^2} \ln (3x - 2y) + \frac{3x^2}{y^2(3x - 2y)}
\]
2. **计算 $ z_y $**
\[
z_y = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y} = 2u \ln v \cdot \left(-\frac{x}{y^2}\right) + \frac{u^2}{v} \cdot (-2)
\]
代入 $ u $ 和 $ v $:
\[
z_y = -\frac{2x^2}{y^3} \ln (3x - 2y) - \frac{2x^2}{y^2(3x - 2y)} = -\frac{2x^2}{y^3} \left[ \ln (3x - 2y) + \frac{y}{3x - 2y} \right]
\]
**答案:**
\[
\boxed{
\begin{aligned}
z_x &= \frac{2x}{y^2} \ln (3x - 2y) + \frac{3x^2}{y^2(3x - 2y)}, \\
z_y &= -\frac{2x^2}{y^3} \left[ \ln (3x - 2y) + \frac{y}{3x - 2y} \right].
\end{aligned}
}
\]