题目
5、证明曲线积分I=int_(L)(x^2+2xy)dx+(x^2+y^4)dy与路径无关,其中L是由点(0,0)到(1,1)的曲线y=sin(pi)/(2)x,并计算I的值.
5、证明曲线积分$I=\int_{L}(x^{2}+2xy)dx+(x^{2}+y^{4})dy$与路径无关,其中L是由点(0,0)到(1,1)的曲线$y=\sin\frac{\pi}{2}x$,并计算I的值.
题目解答
答案
1. **判断与路径无关:**
计算偏导数:
\[
\frac{\partial P}{\partial y} = 2x, \quad \frac{\partial Q}{\partial x} = 2x
\]
由于 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,积分与路径无关。
2. **求势函数:**
设势函数 $f(x, y)$ 满足 $\nabla f = \mathbf{F}$,则
\[
\frac{\partial f}{\partial x} = x^2 + 2xy, \quad \frac{\partial f}{\partial y} = x^2 + y^4
\]
积分得
\[
f(x, y) = \frac{x^3}{3} + x^2y + \frac{y^5}{5} + C
\]
取 $C = 0$。
3. **计算积分:**
从 $(0,0)$ 到 $(1,1)$,
\[
I = f(1,1) - f(0,0) = \left(\frac{1}{3} + 1 + \frac{1}{5}\right) - 0 = \frac{23}{15}
\]
**答案:**
\[
\boxed{\frac{23}{15}}
\]
解析
步骤 1:判断与路径无关
计算偏导数: \[ \frac{\partial P}{\partial y} = 2x, \quad \frac{\partial Q}{\partial x} = 2x \] 由于 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,积分与路径无关。
步骤 2:求势函数
设势函数 $f(x, y)$ 满足 $\nabla f = \mathbf{F}$,则 \[ \frac{\partial f}{\partial x} = x^2 + 2xy, \quad \frac{\partial f}{\partial y} = x^2 + y^4 \] 积分得 \[ f(x, y) = \frac{x^3}{3} + x^2y + \frac{y^5}{5} + C \] 取 $C = 0$。
步骤 3:计算积分
从 $(0,0)$ 到 $(1,1)$, \[ I = f(1,1) - f(0,0) = \left(\frac{1}{3} + 1 + \frac{1}{5}\right) - 0 = \frac{23}{15} \]
计算偏导数: \[ \frac{\partial P}{\partial y} = 2x, \quad \frac{\partial Q}{\partial x} = 2x \] 由于 $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$,积分与路径无关。
步骤 2:求势函数
设势函数 $f(x, y)$ 满足 $\nabla f = \mathbf{F}$,则 \[ \frac{\partial f}{\partial x} = x^2 + 2xy, \quad \frac{\partial f}{\partial y} = x^2 + y^4 \] 积分得 \[ f(x, y) = \frac{x^3}{3} + x^2y + \frac{y^5}{5} + C \] 取 $C = 0$。
步骤 3:计算积分
从 $(0,0)$ 到 $(1,1)$, \[ I = f(1,1) - f(0,0) = \left(\frac{1}{3} + 1 + \frac{1}{5}\right) - 0 = \frac{23}{15} \]