题目
已知lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0,则lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0为lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0。lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0lim _(xarrow +infty )(x)^a[ sqrt ({x)^2+1}+sqrt ({x)^2-1}-2x] =bneq 0 x]=b≠0
已知,则
为
。
题目解答
答案
由题意知,极限为,令
,
,则极限化为
,根据泰勒展开式,
时,
,因此,可以得到
,故极限
结合上下同阶原则,可以得到
,即
,故正确答案选择
。
解析
步骤 1:变量替换
令 $t = \frac{1}{x}$,则当 $x \rightarrow +\infty$ 时,$t \rightarrow 0^+$。原极限可以写为:
$$\lim _{t\rightarrow {0}^{+}}\dfrac {\sqrt {1+{t}^{2}}+\sqrt {1-{t}^{2}}-2}{{t}^{a+1}}$$
步骤 2:泰勒展开
根据泰勒展开式,当 $t \rightarrow 0$ 时,有:
$${(1+x)}^{\alpha }=1+\alpha x+\dfrac {\alpha (\alpha -1)}{2!}{x}^{2}+o({x}^{2})$$
因此,可以得到:
$${(1+{t}^{2})}^{\dfrac {1}{2}}=1+\dfrac {{t}^{2}}{2}+\dfrac {\dfrac {1}{2}(\dfrac {1}{2}-1)}{2!}{t}^{4}+o({t}^{4})$$
$$=1+\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})$$
$${(1-{t}^{2})}^{\dfrac {1}{2}}=1-\dfrac {{t}^{2}}{2}+\dfrac {\dfrac {1}{2}(\dfrac {1}{2}-1)}{2!}{t}^{4}+o({t}^{4})$$
$$=1-\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})$$
步骤 3:计算极限
将上述泰勒展开式代入原极限,得到:
$$\lim _{t\rightarrow {0}^{+}}\dfrac {\sqrt {1+{t}^{2}}+\sqrt {1-{t}^{2}}-2}{{t}^{a+1}}$$
$$=\lim _{t\rightarrow {0}^{+}}\dfrac {1+\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})+1-\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})-2}{{t}^{a+1}}$$
$$=\lim _{t\rightarrow {0}^{+}}\dfrac {-\dfrac {1}{4}{t}^{4}+o({t}^{4})}{{t}^{a+1}}$$
$$=\lim _{t\rightarrow {0}^{+}}\dfrac {-\dfrac {1}{4}{t}^{4}}{{t}^{a+1}}$$
结合上下同阶原则,可以得到:
$$\left \{ \begin{matrix} a+1=4\\ b=-\dfrac {1}{4}\end{matrix} \right.$$
即:
$$\left \{ \begin{matrix} a=3\\ b=-\dfrac {1}{4}\end{matrix} \right.$$
令 $t = \frac{1}{x}$,则当 $x \rightarrow +\infty$ 时,$t \rightarrow 0^+$。原极限可以写为:
$$\lim _{t\rightarrow {0}^{+}}\dfrac {\sqrt {1+{t}^{2}}+\sqrt {1-{t}^{2}}-2}{{t}^{a+1}}$$
步骤 2:泰勒展开
根据泰勒展开式,当 $t \rightarrow 0$ 时,有:
$${(1+x)}^{\alpha }=1+\alpha x+\dfrac {\alpha (\alpha -1)}{2!}{x}^{2}+o({x}^{2})$$
因此,可以得到:
$${(1+{t}^{2})}^{\dfrac {1}{2}}=1+\dfrac {{t}^{2}}{2}+\dfrac {\dfrac {1}{2}(\dfrac {1}{2}-1)}{2!}{t}^{4}+o({t}^{4})$$
$$=1+\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})$$
$${(1-{t}^{2})}^{\dfrac {1}{2}}=1-\dfrac {{t}^{2}}{2}+\dfrac {\dfrac {1}{2}(\dfrac {1}{2}-1)}{2!}{t}^{4}+o({t}^{4})$$
$$=1-\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})$$
步骤 3:计算极限
将上述泰勒展开式代入原极限,得到:
$$\lim _{t\rightarrow {0}^{+}}\dfrac {\sqrt {1+{t}^{2}}+\sqrt {1-{t}^{2}}-2}{{t}^{a+1}}$$
$$=\lim _{t\rightarrow {0}^{+}}\dfrac {1+\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})+1-\dfrac {{t}^{2}}{2}-\dfrac {1}{8}{t}^{4}+o({t}^{4})-2}{{t}^{a+1}}$$
$$=\lim _{t\rightarrow {0}^{+}}\dfrac {-\dfrac {1}{4}{t}^{4}+o({t}^{4})}{{t}^{a+1}}$$
$$=\lim _{t\rightarrow {0}^{+}}\dfrac {-\dfrac {1}{4}{t}^{4}}{{t}^{a+1}}$$
结合上下同阶原则,可以得到:
$$\left \{ \begin{matrix} a+1=4\\ b=-\dfrac {1}{4}\end{matrix} \right.$$
即:
$$\left \{ \begin{matrix} a=3\\ b=-\dfrac {1}{4}\end{matrix} \right.$$