求指导本题解题过程,谢谢您!2.设二维随机变量(X,Y)的概率密度为-|||-f(x,y)= ) (e)^-x, 0lt ylt x 0, .-|||-求 Z=X+Y 的概率密度f2(z ).
求指导本题解题过程,谢谢您!3.设随机变量X与Y相互独立,其概率密度分别为-|||-_(x)(x)= ) 3(e)^-3x,xgeqslant 0 0,xlt 0 的概率密度f2(z ).
下列级数绝对收敛的是()A.sum _(n=1)^infty dfrac ({(-1))^n+1}(2n+1)B.sum _(n=1)^infty dfrac ({(-1))^n+1}(2n+1)C.sum _(n=1)^infty dfrac ({(-1))^n+1}(2n+1)D.sum _(n=1)^infty dfrac ({(-1))^n+1}(2n+1)
7.计算下列定积分.-|||-(3) (int )_(dfrac {pi )(4)}^dfrac (pi {3)}dfrac (x)({sin )^2x}dx
n阶方阵A具有n个不同的特征值是A与对角阵相似的( )A. 充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件 .
3.证明: (int )_(x)^1dfrac (dt)(1+{t)^2}=(int )_(1)^dfrac (1{x)}dfrac (dt)(1+{t)^2}(xgt 0).
要求从供选择的答案中选出填入叙述中的方框内的正确答案(1)2个顶点非同构的无向树有_____棵;(2)4个顶点非同构的无向树有_____棵;(3)6个顶点非同构的无向树有_____棵供选择的答案:1; 2; 3; 4; 5; 6; 7; 8; 9; 10;
求11和13题答案,谢谢您11.填空题(3分)-|||-设A为三阶方阵,且 |A|=dfrac (1)(4), 则 |2(A)^-1|=-|||-输入答案-|||-12.填空题(3分)-|||-已知 |(alpha )_(1),(alpha )_(2),(alpha )_(3)|=3, 则 |2(alpha )_(1)+5(alpha )_(2),3(alpha )_(2),(alpha )_(3)|=-|||-输入答案-|||-13.填空题(3分)-|||-若四阶方阵A的特征值分别为1, -2, 3, -4-|||-则行列式 (A)=-|||-输入答案
把一枚均匀的硬币连续抛2次,以X表示出现正-|||-面的次数,Y表示出现反面的次数,则 P(X=-|||-1,Y=1)=()-|||-A.0-|||-B.0.25-|||-C.0.5-|||-D.1
求指导本题解题过程,谢谢您!,15分)-|||-5.设线性方程组 ) (x)_(1)-(1+lambda )(x)_(2)-(x)_(3)=1 (x)_(1)+(x)_(2)+3(x)_(3)=-3 2(x)_(1)-2(x)_(2)+2(x)_(3)=-lambda . 当λ取何值时方程组有惟一解,有无限多解?并在有无限-|||-多解时求其通解.(15分)
热门问题
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
计算: (log )_(2)9cdot (log )_(3)4= __
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
【填空题】sin dfrac (11)(6)pi =___.
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
下列命题中错误的是( )A B C D
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。