logonew chat icon top
  • icon-chaticon-chat-active搜题/提问
    new chat icon
    新建会话
  • icon-calculatoricon-calculator-active计算器
  • icon-subjecticon-subject-active学科题目
  • icon-pluginicon-plugin-active浏览器插件
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
recent chat icon
历史记录
首页
/
数学
题目

求由曲线y=x^2,y=x+2围成的图形绕y轴旋转一周生成的旋转体的体积V.

求由曲线$$y=x^2$$,$$y=x+2$$围成的图形绕$$y$$轴旋转一周生成的旋转体的体积$$V$$.

题目解答

答案

直线$$y=x+2$$与$$y$$轴的交点的坐标为$$C(0,2)$$;
令$$x^2=x+2$$,得$$x^2-x-2=(x+1)(x-2)$$$$=0$$,故得$$x_1=-1$$,$$x_2=2$$;
即直线$$y=x+2$$与抛物线$$y=x^2$$的交点为$$A(-1,1)$$,$$B(2,4)$$;
直线段$$CB$$绕$$y$$轴旋转一周所得旋转体是一个圆锥,该圆锥的底面半径为2,圆锥高为2;
其体积等于$$\frac{8}{3} \pi$$;
故所求旋转体的体积$$V=\int_{0}^{4} {\pi x^2}\,{\rm dy}-\frac{8}{3} \pi$$$$=\int_{0}^{4} {\pi y}\,{\rm dy}-\frac{8}{3} \pi$$$$=\frac{\pi}{2}|^4_0-\frac{8}{3}\pi$$$$=8\pi- \frac{8}{3}\pi=\frac{16}{3}\pi$$.

解析

步骤 1:确定曲线交点
首先,我们需要找到曲线$$y=x^2$$和$$y=x+2$$的交点。为此,我们解方程$$x^2=x+2$$,即$$x^2-x-2=0$$。解这个方程,我们得到$$x_1=-1$$和$$x_2=2$$。因此,交点为$$A(-1,1)$$和$$B(2,4)$$。

步骤 2:确定旋转体的体积
旋转体的体积可以通过计算两个旋转体的体积之差来得到。一个旋转体是由直线$$y=x+2$$绕$$y$$轴旋转一周生成的,另一个旋转体是由曲线$$y=x^2$$绕$$y$$轴旋转一周生成的。我们首先计算由直线$$y=x+2$$绕$$y$$轴旋转一周生成的圆锥的体积,然后计算由曲线$$y=x^2$$绕$$y$$轴旋转一周生成的旋转体的体积,最后将两者相减。

步骤 3:计算圆锥的体积
直线$$y=x+2$$与$$y$$轴的交点为$$C(0,2)$$,与曲线$$y=x^2$$的交点为$$B(2,4)$$。因此,圆锥的底面半径为2,圆锥高为2。圆锥的体积为$$V_{\text{圆锥}}=\frac{1}{3}\pi r^2 h=\frac{1}{3}\pi (2)^2 (2)=\frac{8}{3}\pi$$。

步骤 4:计算曲线$$y=x^2$$绕$$y$$轴旋转一周生成的旋转体的体积
我们使用圆盘法计算旋转体的体积。体积$$V$$可以通过积分$$V=\int_{0}^{4} \pi x^2\,{\rm dy}$$来计算。由于$$y=x^2$$,我们有$$x=\sqrt{y}$$。因此,$$V=\int_{0}^{4} \pi (\sqrt{y})^2\,{\rm dy}=\int_{0}^{4} \pi y\,{\rm dy}=\frac{\pi}{2}y^2|^4_0=\frac{\pi}{2}(4^2-0^2)=8\pi$$。

步骤 5:计算旋转体的体积
旋转体的体积$$V$$等于曲线$$y=x^2$$绕$$y$$轴旋转一周生成的旋转体的体积减去圆锥的体积,即$$V=8\pi-\frac{8}{3}\pi=\frac{24}{3}\pi-\frac{8}{3}\pi=\frac{16}{3}\pi$$。

相关问题

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4 B. 1, 2, 3, 5 C. 1, 2,4, 5 D. 1,3, 4, 5

  • 十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21

  • 求定积分(int )_(0)^1((3x-2))^4dx

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 十六进制数3A.B对应的八进制数是()

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.

  • 判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.

  • ‎公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]

  • 下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B

  • 11.当 k=() () 时,函数 f(x)= ) (e)^x+2,xneq 0 k, x=0 . 在 x=0 处连续.-|||-A.0 B.1 C.2 D.3

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是(  )。A. 000-010-100-101-111 B. 000-010-001-101-111 C. 000-100-110-111 D. 000-001-011-111

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市天河区黄村大观公园路10号3N2
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号