题目
设=sqrt ({x)^2+(y)^2+(z)^2} 则|div(grad)|(1,0,1)= () .-|||-(A) -sqrt (2) (B) sqrt (2) (C)0

题目解答
答案

解析
步骤 1:计算梯度
首先,我们需要计算函数 $u=\sqrt {{x}^{2}+{y}^{2}+{z}^{2}}$ 的梯度。梯度是一个向量,其分量是函数对每个变量的偏导数。因此,我们有:
$$
grad(u) = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)
$$
对于 $u=\sqrt {{x}^{2}+{y}^{2}+{z}^{2}}$,我们有:
$$
\frac{\partial u}{\partial x} = \frac{x}{\sqrt{x^2+y^2+z^2}}, \quad \frac{\partial u}{\partial y} = \frac{y}{\sqrt{x^2+y^2+z^2}}, \quad \frac{\partial u}{\partial z} = \frac{z}{\sqrt{x^2+y^2+z^2}}
$$
因此,梯度为:
$$
grad(u) = \left(\frac{x}{\sqrt{x^2+y^2+z^2}}, \frac{y}{\sqrt{x^2+y^2+z^2}}, \frac{z}{\sqrt{x^2+y^2+z^2}}\right)
$$
步骤 2:计算散度
接下来,我们需要计算梯度的散度。散度是一个标量,它是向量场的每个分量对相应变量的偏导数之和。因此,我们有:
$$
div(grad(u)) = \frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^2+y^2+z^2}}\right) + \frac{\partial}{\partial y}\left(\frac{y}{\sqrt{x^2+y^2+z^2}}\right) + \frac{\partial}{\partial z}\left(\frac{z}{\sqrt{x^2+y^2+z^2}}\right)
$$
计算每个偏导数,我们得到:
$$
\frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^2+y^2+z^2}}\right) = \frac{1}{\sqrt{x^2+y^2+z^2}} - \frac{x^2}{(x^2+y^2+z^2)^{3/2}}
$$
$$
\frac{\partial}{\partial y}\left(\frac{y}{\sqrt{x^2+y^2+z^2}}\right) = \frac{1}{\sqrt{x^2+y^2+z^2}} - \frac{y^2}{(x^2+y^2+z^2)^{3/2}}
$$
$$
\frac{\partial}{\partial z}\left(\frac{z}{\sqrt{x^2+y^2+z^2}}\right) = \frac{1}{\sqrt{x^2+y^2+z^2}} - \frac{z^2}{(x^2+y^2+z^2)^{3/2}}
$$
因此,散度为:
$$
div(grad(u)) = \frac{3}{\sqrt{x^2+y^2+z^2}} - \frac{x^2+y^2+z^2}{(x^2+y^2+z^2)^{3/2}} = \frac{3}{\sqrt{x^2+y^2+z^2}} - \frac{1}{\sqrt{x^2+y^2+z^2}} = \frac{2}{\sqrt{x^2+y^2+z^2}}
$$
步骤 3:计算在点 (1,0,1) 的值
最后,我们需要计算散度在点 (1,0,1) 的值。将点 (1,0,1) 代入散度的表达式,我们得到:
$$
div(grad(u))|_{(1,0,1)} = \frac{2}{\sqrt{1^2+0^2+1^2}} = \frac{2}{\sqrt{2}} = \sqrt{2}
$$
因此,$|div(grad)|(1,0,1) = \sqrt{2}$。
首先,我们需要计算函数 $u=\sqrt {{x}^{2}+{y}^{2}+{z}^{2}}$ 的梯度。梯度是一个向量,其分量是函数对每个变量的偏导数。因此,我们有:
$$
grad(u) = \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z}\right)
$$
对于 $u=\sqrt {{x}^{2}+{y}^{2}+{z}^{2}}$,我们有:
$$
\frac{\partial u}{\partial x} = \frac{x}{\sqrt{x^2+y^2+z^2}}, \quad \frac{\partial u}{\partial y} = \frac{y}{\sqrt{x^2+y^2+z^2}}, \quad \frac{\partial u}{\partial z} = \frac{z}{\sqrt{x^2+y^2+z^2}}
$$
因此,梯度为:
$$
grad(u) = \left(\frac{x}{\sqrt{x^2+y^2+z^2}}, \frac{y}{\sqrt{x^2+y^2+z^2}}, \frac{z}{\sqrt{x^2+y^2+z^2}}\right)
$$
步骤 2:计算散度
接下来,我们需要计算梯度的散度。散度是一个标量,它是向量场的每个分量对相应变量的偏导数之和。因此,我们有:
$$
div(grad(u)) = \frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^2+y^2+z^2}}\right) + \frac{\partial}{\partial y}\left(\frac{y}{\sqrt{x^2+y^2+z^2}}\right) + \frac{\partial}{\partial z}\left(\frac{z}{\sqrt{x^2+y^2+z^2}}\right)
$$
计算每个偏导数,我们得到:
$$
\frac{\partial}{\partial x}\left(\frac{x}{\sqrt{x^2+y^2+z^2}}\right) = \frac{1}{\sqrt{x^2+y^2+z^2}} - \frac{x^2}{(x^2+y^2+z^2)^{3/2}}
$$
$$
\frac{\partial}{\partial y}\left(\frac{y}{\sqrt{x^2+y^2+z^2}}\right) = \frac{1}{\sqrt{x^2+y^2+z^2}} - \frac{y^2}{(x^2+y^2+z^2)^{3/2}}
$$
$$
\frac{\partial}{\partial z}\left(\frac{z}{\sqrt{x^2+y^2+z^2}}\right) = \frac{1}{\sqrt{x^2+y^2+z^2}} - \frac{z^2}{(x^2+y^2+z^2)^{3/2}}
$$
因此,散度为:
$$
div(grad(u)) = \frac{3}{\sqrt{x^2+y^2+z^2}} - \frac{x^2+y^2+z^2}{(x^2+y^2+z^2)^{3/2}} = \frac{3}{\sqrt{x^2+y^2+z^2}} - \frac{1}{\sqrt{x^2+y^2+z^2}} = \frac{2}{\sqrt{x^2+y^2+z^2}}
$$
步骤 3:计算在点 (1,0,1) 的值
最后,我们需要计算散度在点 (1,0,1) 的值。将点 (1,0,1) 代入散度的表达式,我们得到:
$$
div(grad(u))|_{(1,0,1)} = \frac{2}{\sqrt{1^2+0^2+1^2}} = \frac{2}{\sqrt{2}} = \sqrt{2}
$$
因此,$|div(grad)|(1,0,1) = \sqrt{2}$。