题目
下题中给出了四个结果,从中选出一个正确的结果.-|||-设f(x)是以2π为周期的周期函数,它在 [ -pi ,pi ) 上的表达式为|x |,则f(x)-|||-的傅里叶级数为 () .-|||-(A) dfrac (pi )(2)-dfrac (4)(pi )[ cos x+dfrac (1)({3)^2cos 3x}+dfrac (1)({5)^2}cos x+... +dfrac (1)({(2n-1))^2}(2n-1)x+... ] -|||-(B) dfrac (2)(pi )[ dfrac (1)({2)^2}sin 2x+dfrac (1)({4)^2}sin 4x+dfrac (1)({6)^2}sin 6x+... +dfrac (1)({(2n))^2}sin 2nx+... ] -|||-(C) dfrac (4)(n)[ cos x+dfrac (1)({3)^2}cos 3x+dfrac (1)({5)^2}cos x+... +dfrac (1)({(2n-1))^2}cos (2n-1)x+... ] -|||-(D) dfrac (1)(pi )[ dfrac (1)({2)^2}cos 2x+dfrac (1)({4)^2}cos 4x+dfrac (1)({6)^2}cos 6x+... +dfrac (1)({(2n))^2}cos 2nx+... ]

题目解答
答案

解析
步骤 1:确定函数的性质
函数f(x) = |x|在区间[-π, π)上是偶函数,因为|x| = |-x|。因此,f(x)的傅里叶级数只包含余弦项,即傅里叶级数是余弦级数。
步骤 2:计算傅里叶系数
傅里叶级数的一般形式为:
\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) \]
其中,傅里叶系数为:
\[ a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \]
\[ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \]
由于f(x)是偶函数,所以a_0和a_n的计算可以简化为:
\[ a_0 = \frac{2}{\pi} \int_{0}^{\pi} |x| dx \]
\[ a_n = \frac{2}{\pi} \int_{0}^{\pi} |x| \cos(nx) dx \]
步骤 3:计算a_0
\[ a_0 = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \left[ \frac{x^2}{2} \right]_{0}^{\pi} = \frac{2}{\pi} \cdot \frac{\pi^2}{2} = \pi \]
步骤 4:计算a_n
\[ a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx \]
使用分部积分法,设u = x,dv = cos(nx)dx,则du = dx,v = \frac{1}{n} \sin(nx)。
\[ a_n = \frac{2}{\pi} \left[ \frac{x}{n} \sin(nx) \right]_{0}^{\pi} - \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{n} \sin(nx) dx \]
\[ a_n = \frac{2}{\pi} \cdot 0 - \frac{2}{\pi} \cdot \frac{1}{n} \left[ -\frac{1}{n} \cos(nx) \right]_{0}^{\pi} \]
\[ a_n = \frac{2}{\pi} \cdot \frac{1}{n^2} \left[ \cos(n\pi) - 1 \right] \]
\[ a_n = \frac{2}{\pi} \cdot \frac{1}{n^2} \left[ (-1)^n - 1 \right] \]
当n为奇数时,a_n = -\frac{4}{\pi n^2},当n为偶数时,a_n = 0。
步骤 5:写出傅里叶级数
\[ f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[ \cos(x) + \frac{1}{3^2} \cos(3x) + \frac{1}{5^2} \cos(5x) + \cdots \right] \]
函数f(x) = |x|在区间[-π, π)上是偶函数,因为|x| = |-x|。因此,f(x)的傅里叶级数只包含余弦项,即傅里叶级数是余弦级数。
步骤 2:计算傅里叶系数
傅里叶级数的一般形式为:
\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) \]
其中,傅里叶系数为:
\[ a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \]
\[ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx \]
由于f(x)是偶函数,所以a_0和a_n的计算可以简化为:
\[ a_0 = \frac{2}{\pi} \int_{0}^{\pi} |x| dx \]
\[ a_n = \frac{2}{\pi} \int_{0}^{\pi} |x| \cos(nx) dx \]
步骤 3:计算a_0
\[ a_0 = \frac{2}{\pi} \int_{0}^{\pi} x dx = \frac{2}{\pi} \left[ \frac{x^2}{2} \right]_{0}^{\pi} = \frac{2}{\pi} \cdot \frac{\pi^2}{2} = \pi \]
步骤 4:计算a_n
\[ a_n = \frac{2}{\pi} \int_{0}^{\pi} x \cos(nx) dx \]
使用分部积分法,设u = x,dv = cos(nx)dx,则du = dx,v = \frac{1}{n} \sin(nx)。
\[ a_n = \frac{2}{\pi} \left[ \frac{x}{n} \sin(nx) \right]_{0}^{\pi} - \frac{2}{\pi} \int_{0}^{\pi} \frac{1}{n} \sin(nx) dx \]
\[ a_n = \frac{2}{\pi} \cdot 0 - \frac{2}{\pi} \cdot \frac{1}{n} \left[ -\frac{1}{n} \cos(nx) \right]_{0}^{\pi} \]
\[ a_n = \frac{2}{\pi} \cdot \frac{1}{n^2} \left[ \cos(n\pi) - 1 \right] \]
\[ a_n = \frac{2}{\pi} \cdot \frac{1}{n^2} \left[ (-1)^n - 1 \right] \]
当n为奇数时,a_n = -\frac{4}{\pi n^2},当n为偶数时,a_n = 0。
步骤 5:写出傅里叶级数
\[ f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[ \cos(x) + \frac{1}{3^2} \cos(3x) + \frac{1}{5^2} \cos(5x) + \cdots \right] \]