题目
D为双抛物面 xy=z 平面 x+y=1 及 z=0 所围成-|||-的区域,则 iint (int )_(D)^xydxdydz= ()-|||-A dfrac (1)(120)-|||-B dfrac (2)(155)-|||-C dfrac (1)(180)-|||-D dfrac (1)(90)

题目解答
答案

解析
步骤 1:确定积分区域
双抛物面 xy=z, 平面 x+y=1 及 z=0 所围成的区域 D 可以表示为:
$D = \{(x,y,z) | 0 \leq x \leq 1, 0 \leq y \leq 1-x, 0 \leq z \leq xy\}$
步骤 2:计算三重积分
根据三重积分的定义,我们有:
${\iiint }_{D}xydxdydz = {\int }_{0}^{1}{\int }_{0}^{1-x}{\int }_{0}^{xy}xydzdydx$
步骤 3:计算内层积分
首先计算内层积分,即对 z 积分:
${\int }_{0}^{xy}xydz = xy{\int }_{0}^{xy}dz = xy(xy - 0) = x^{2}y^{2}$
步骤 4:计算中层积分
接下来计算中层积分,即对 y 积分:
${\int }_{0}^{1-x}x^{2}y^{2}dy = x^{2}{\int }_{0}^{1-x}y^{2}dy = x^{2}[\dfrac{1}{3}y^{3}]_{0}^{1-x} = x^{2}[\dfrac{1}{3}(1-x)^{3}]$
步骤 5:计算外层积分
最后计算外层积分,即对 x 积分:
${\int }_{0}^{1}x^{2}[\dfrac{1}{3}(1-x)^{3}]dx = \dfrac{1}{3}{\int }_{0}^{1}x^{2}(1-x)^{3}dx$
步骤 6:计算最终结果
计算积分 $\dfrac{1}{3}{\int }_{0}^{1}x^{2}(1-x)^{3}dx$,我们得到:
$\dfrac{1}{3}{\int }_{0}^{1}x^{2}(1-x)^{3}dx = \dfrac{1}{3}[\dfrac{1}{3}x^{3}-\dfrac{1}{4}x^{4}+\dfrac{1}{5}x^{5}-\dfrac{1}{6}x^{6}]_{0}^{1} = \dfrac{1}{3}(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}) = \dfrac{7}{180}$
双抛物面 xy=z, 平面 x+y=1 及 z=0 所围成的区域 D 可以表示为:
$D = \{(x,y,z) | 0 \leq x \leq 1, 0 \leq y \leq 1-x, 0 \leq z \leq xy\}$
步骤 2:计算三重积分
根据三重积分的定义,我们有:
${\iiint }_{D}xydxdydz = {\int }_{0}^{1}{\int }_{0}^{1-x}{\int }_{0}^{xy}xydzdydx$
步骤 3:计算内层积分
首先计算内层积分,即对 z 积分:
${\int }_{0}^{xy}xydz = xy{\int }_{0}^{xy}dz = xy(xy - 0) = x^{2}y^{2}$
步骤 4:计算中层积分
接下来计算中层积分,即对 y 积分:
${\int }_{0}^{1-x}x^{2}y^{2}dy = x^{2}{\int }_{0}^{1-x}y^{2}dy = x^{2}[\dfrac{1}{3}y^{3}]_{0}^{1-x} = x^{2}[\dfrac{1}{3}(1-x)^{3}]$
步骤 5:计算外层积分
最后计算外层积分,即对 x 积分:
${\int }_{0}^{1}x^{2}[\dfrac{1}{3}(1-x)^{3}]dx = \dfrac{1}{3}{\int }_{0}^{1}x^{2}(1-x)^{3}dx$
步骤 6:计算最终结果
计算积分 $\dfrac{1}{3}{\int }_{0}^{1}x^{2}(1-x)^{3}dx$,我们得到:
$\dfrac{1}{3}{\int }_{0}^{1}x^{2}(1-x)^{3}dx = \dfrac{1}{3}[\dfrac{1}{3}x^{3}-\dfrac{1}{4}x^{4}+\dfrac{1}{5}x^{5}-\dfrac{1}{6}x^{6}]_{0}^{1} = \dfrac{1}{3}(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}) = \dfrac{7}{180}$