题目
1.用消元法解下列线性方程组:-|||-(3) ) (x)_(1)-(x)_(2)+(x)_(3)-(x)_(4)=1 (x)_(1)-(x)_(2)-(x)_(3)+(x)_(4)=0 (x)_(1)-(x)_(2)-2(x)_(3)+2(x)_ .

题目解答
答案

解析
步骤 1:写出增广矩阵
写出方程组的增广矩阵为:
$$
(A:b) = \left(\begin{matrix} 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & -2 & 2 & -1 \end{matrix}\right)
$$
步骤 2:化为阶梯形矩阵
对增广矩阵施以初等行变换,化为阶梯形矩阵:
$$
\left(\begin{matrix} 1 & -1 & 1 & -1 & 1 \\ 0 & 0 & -2 & 2 & -1 \\ 0 & 0 & -3 & 3 & -2 \end{matrix}\right)
$$
步骤 3:化为最简阶梯形矩阵
继续对阶梯形矩阵施以初等行变换,化为最简阶梯形矩阵:
$$
\left(\begin{matrix} 1 & -1 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{matrix}\right)
$$
步骤 4:写出同解方程组
由最简阶梯形矩阵写出同解方程组:
$$
\left \{ \begin{matrix} {x}_{1}=\dfrac {1}{2}+{x}_{2}\\ {x}_{3}=\dfrac {1}{2}+{x}_{4}\end{matrix} \right.
$$
步骤 5:写出通解
取 ${x}_{2}={c}_{1}$ ,${x}_{4}={c}_{2}$ ,则原方程组的全部解为:
$$
\left \{ \begin{matrix} {x}_{1}=\dfrac {1}{2}+{c}_{1}\\ {x}_{2}={c}_{1}\\ {x}_{3}=\dfrac {1}{2}+{c}_{2}\\ {x}_{4}={c}_{2}\end{matrix} \right.
$$
写出方程组的增广矩阵为:
$$
(A:b) = \left(\begin{matrix} 1 & -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 & 0 \\ 1 & -1 & -2 & 2 & -1 \end{matrix}\right)
$$
步骤 2:化为阶梯形矩阵
对增广矩阵施以初等行变换,化为阶梯形矩阵:
$$
\left(\begin{matrix} 1 & -1 & 1 & -1 & 1 \\ 0 & 0 & -2 & 2 & -1 \\ 0 & 0 & -3 & 3 & -2 \end{matrix}\right)
$$
步骤 3:化为最简阶梯形矩阵
继续对阶梯形矩阵施以初等行变换,化为最简阶梯形矩阵:
$$
\left(\begin{matrix} 1 & -1 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & -1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 & 0 \end{matrix}\right)
$$
步骤 4:写出同解方程组
由最简阶梯形矩阵写出同解方程组:
$$
\left \{ \begin{matrix} {x}_{1}=\dfrac {1}{2}+{x}_{2}\\ {x}_{3}=\dfrac {1}{2}+{x}_{4}\end{matrix} \right.
$$
步骤 5:写出通解
取 ${x}_{2}={c}_{1}$ ,${x}_{4}={c}_{2}$ ,则原方程组的全部解为:
$$
\left \{ \begin{matrix} {x}_{1}=\dfrac {1}{2}+{c}_{1}\\ {x}_{2}={c}_{1}\\ {x}_{3}=\dfrac {1}{2}+{c}_{2}\\ {x}_{4}={c}_{2}\end{matrix} \right.
$$