(此题总分值6分)求微分方程dfrac (dy)(dx)=dfrac (y-sqrt {{x)^2+(y)^2}}(x)的通解.
微分方程dfrac (y)(x)+tan dfrac (y)(x)满足dfrac (y)(x)+tan dfrac (y)(x)的特解是______.
某高校大学生数学建模竞赛协会共有240名会员,今欲调查参加过国家级竞赛和省级竞赛的会员人数,发现每个会员至少参加过一个级别的竞赛。调查结果显示:有7/12的会员参加过国家级竞赛,有1/4的会员两个级别的竞赛都参加过。问参加过省级竞赛的会员人数是:( )。A. 160B. 120C. 100D. 140
某公园绿化管理部门采购了100片围栏,每片长1米且不可弯折,现拆分拟围成5块周长相等且互不相邻的矩形花卉区域.若不考虑拼接间隙,那么这5块区域的最大与最小面积最多可相差多少平方米?( ).A. 10B. 12C. 16D. 25
设A= (& 1 1& 1& 2 ) ..
某地居民用水价格分二级阶梯,户年用水量在0~180(含)吨的水价5元/吨;180吨以上的水价7元/吨。户内人口在5人以上的,每多1人,阶梯水量标准增加30吨。老张家5人,老李家6人,去年用水量都是210吨。问老李家的人均水费比老张家少约多少元?A. 12B. 35C. 47D. 60
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且 f(0)=0 (1)=1,-|||-试证明:对于任意给定的正数a和b,在开区间(0,1)内存在不同的ξ和n,使得-|||-dfrac (a)(f'(xi ))+dfrac (b)(f'(n))=a+b
12个啤酒空瓶可以免费换1瓶啤酒,现有101个啤酒空瓶,最多可以免费喝到的啤酒为()。A. 10瓶B. 11瓶C. 8瓶D. 9瓶
某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至少为多少名:()A. 10B. 11C. 12D. 13
左图为给定的立体图形,从任一角度观看,下面哪项不可能是该立体图形的视图?square -|||-A B C DA.AB.BC.CD.D
热门问题
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
计算: (log )_(2)9cdot (log )_(3)4= __
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
下列命题中错误的是( )A B C D
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
【填空题】sin dfrac (11)(6)pi =___.
12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .