3.判断下列函数的奇偶性:-|||-(6) =|x|+1;
明明买了4张贴画和3个笔记本共用13.2元,亮亮买了同样的2张贴画和1个笔记本共用5.4元。1个笔记本多少钱?
=3(x)^2+6x+1在=3(x)^2+6x+1处的切线斜率是____.
已知函数f(x)在点x0处可导,则下列极 限 中 () 等于导数值f`(x0).-|||-(A) lim _(harrow 0)dfrac (f({x)_(0)+2h)-f((x)_(0))}(h) (B) lim _(harrow 0)dfrac (f({x)_(0)-3h)-f((x)_(0))}(h)-|||-(C) lim _(harrow 0)dfrac (f({x)_(0))-f((x)_(0)-h)}(h) (D) lim _(harrow 0)dfrac (f({x)_(0))-f((x)_(0)+h)}(h)
[题目]解方程组: ) 3x+5y=5 3x-4y=23 .
"跟踪训练1]求下列不等式的解集:-|||-(1) ^2-3x+1leqslant 0;
(3)设a1,a2,β1,β2均是3维列向量,且α1,α2线性无关,β1β2线性无关,-|||-证明存在非零向量y,使得y既可由α1 α2线性表出也可由β1,β2线性表出.-|||-1 2 -3 [0-|||-当 _(1)= 0 _(2)= -1 β1= 2 β2= 1 时,求出所有的向量Y.-|||-2. 3 -5 1
某企业4个分公司今年的销售额之和是去年的1.2倍。其中,甲分公司的销售额增长了50%,乙分公司的销售额与去年相同,丙和丁分公司的销售额均增长了25%。已知去年甲、丙、丁三个分公司的销售额之比为2:3:5,则乙分公司今年的销售额占4个分公司总量的:A. 1/3B. 2/7C. 4/13D. 5/18
证明函数(x)=ln (x+sqrt ({x)^2+1})为奇函数.
(2)若 (a-0), f(a+0) 主少有-|||-△[例1]设 (x)=dfrac ({x)^3-3x+2}({x)^2-1}, 求f(x)的间断点并分类.-|||-14cm。的问断占
热门问题
下列哪项不是命题() A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
求定积分(int )_(0)^1((3x-2))^4dx
下列哪项不是命题() A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
11.当 k=() () 时,函数 f(x)= ) (e)^x+2,xneq 0 k, x=0 . 在 x=0 处连续.-|||-A.0 B.1 C.2 D.3
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4 B. 1, 2, 3, 5 C. 1, 2,4, 5 D. 1,3, 4, 5
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
十六进制数3A.B对应的八进制数是()
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111 B. 000-010-001-101-111 C. 000-100-110-111 D. 000-001-011-111
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]