20.(判断题) 极大线性无关组唯一的向量组必为线性无关向量组。 () (本-|||-OA、 true-|||-O B. false~
int dfrac (1+2{x)^2}({x)^2(1+(x)^2})dx_____.
设 A、 B 为同阶方阵,且 r(A)=r(B),则 ( )A. 与B. 相似C. A 与 B 等价D. A与 B 合同
602 由相交于三点(x 1,y1)(x2,y2)(x3,y3 )(其中 _(1)lt (x)_(2)lt (x)_(3)) 的两曲线 =f(x)gt -|||-0, =g(x)gt 0 所围成的图形绕x轴旋转一周所得旋转体体积为-|||-(A) (int )_({x)_(1)}^(x_{3)}pi ([ f(x)-g(x)] )^2dx . (B) (int )_({x)_(1)}^(x_{3)}pi [ (f)^2(x)-(g)^2(x)] dx.-|||-(C)(int )_(x)^(x_{3)}pi |(f)^2(x)-(g)^2(x)|dx (D) |(int )_({x)_(1)}^(x_{3)}pi [ (f)^2(x)-(g)^2(x)] dx|
欲做一个底为正方形,客积 108 立方米的长方体开口容器 ,问该容器的底边和高各为多少米时用样最省?
72 下列4个命题-|||-①若f(x)在 x=a 处连续,且|f(x )|在 x=a 处可导,则f(x)在 x=a 处必可导.-|||-②设φ(x)在 x=a 的某邻域内有定义,且limφ(x)存在,则 (x)=(x-a)varphi (x) 在 x=-|||-a处必可导.-|||-③设φ(x)在 x=a 的某邻域内有定义,且limφ(x)存在,则 (x)=|x-a|varphi (x) 在 x=-|||-a处必可导.-|||-④若f(x)在 x=a 的某邻域内有定义,且 lim _(xarrow 0)dfrac (f(a+x)-f(a-x))(x) 存在,则f(x)在-|||-x=a 处必可导.-|||-正确的命题为-|||-(A)①与②. (B)③与④. (C)①与③. (D)②与④.
[题目]设函数 f(x)= ) 1-2(x)^2,xlt -1 (x)^3,-1leqslant xleqslant 2 12x-16,xgt 2 .-|||-(1)写出f(x)的反函数g(x)的表达式;-|||-(2)g(x)是否有间断点、不可导点,若有,指出这些-|||-点.
已知全集U=A∪B=(x∈N|0≤x≤10),A∩⎛ ⎛⎜ ⎜⎜ ⎜⎝⎞⎟⎟⎠∁uB=(1,3,5,7), 试求集合B.
设f(x)有连续的导数, (0)=0,设f(x)有连续的导数, (0)=0,
(int )_(1)^edfrac (ln x)(x)dx.
热门问题
函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
求定积分(int )_(0)^1((3x-2))^4dx
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234; (2)4132;(3)3421; (4)2413;(5)13 ... (2n-1)24 ... (2n); (6)13 ... (2n-1)(2n)(2n-2) ... 2.
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
3. 求极限 lim _(xarrow 0)dfrac (({e)^(x^2-1))}(xln (1-6x))=