logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subject-activeicon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
  • 医学医学
  • 政治学政治学
  • 管理管理
  • 计算机计算机
  • 教育教育
  • 数学数学
  • 艺术艺术

22.设 f(x)= { ,xlt 0 ln (1+x)+2a,xgeqslant 0

求极限 lim _(narrow infty )dfrac (sqrt [n]{n!)}(n).

15、-|||-设向量组 _(1)=(1,2) , _(2)=(0,2) =(4,2), 则 () .-|||-α1,a2,β线性无关-|||-β不能由α1,α2线性表示-|||-β可由α1,α2线性表示,但表示法不惟一-|||-β可由α1,α2线性表示,且表示法惟一

267 累次积分 int_(-(pi)/(2))^(pi)/(2)dxint_(0)^sin x(x^2+ycosx)sqrt(1-y^2)dy=A. (2)/(3)-(pi)/(4)B. (2)/(3)+(pi)/(4)C. (2)/(3)+(pi)/(8)D. (2)/(3)-(pi)/(8)

1.单选题1.1 若4×4矩阵A=(alpha_(1),gamma_(2),gamma_(3),gamma_(4)),B=(beta_(1),gamma_(2),gamma_(3),gamma_(4))其中|alpha,beta,gamma_(1),gamma_(2),gamma_(3),gamma_(4) 均为4维列向量,且已知行列式det(A)=4, det(B)=1则行列式det(A+B)=()A. 25B. 40C. 41D. 50

212 设 y_(1)(x) 与 y_(2)(x) 是二阶线性微分方程 y^primeprime+py^prime+qy=f(x) 的两个解,y_(3)(x) 与 y_(4)(x) 是二阶线性微分方程 y^primeprime+py^prime+qy=g(x) 的两个解,则下列函数中,一定是二阶线性微分方程 y^primeprime+py^prime+qy=f(x)-g(x) 的解的是A. y_(1)(x)-2y_(2)(x)+2y_(3)(x)-y_(4)(x).B. 2y_(1)(x)-y_(2)(x)+y_(3)(x)-2y_(4)(x).C. 2y_(1)(x)-y_(2)(x)+2y_(3)(x)-y_(4)(x).D. y_(1)(x)-2y_(2)(x)+y_(3)(x)-2y_(4)(x).

设 (x+dfrac (1)(x))=(x)^2+dfrac (1)({x)^2}, 则 lim _(xarrow 3)f(x)= __

1.31 设向量组α_(1)=(2,0,0)^T,α_(2)=(0,0,-1)^T,则下列向量中可以由α_(1),α_(2)线性表示的是()。A. (-1,-1,-1)^TB. (0,-1,-1)^TC. (-1,-1,0)^TD. (-1,0,-1)^T

(3)(1995,数一)已知A^-1BA=6A+overline(BA),若A=}(1)/(3)&0&00&(1)/(4)&00&0&(1)/(7),则B=____.

设f(x)的定义域D=[0,1],求下列各函数的定义域:(1)f(x^2)(2)f(sinx)(3)f(x+a)(a>0)(4)f(x+a)+f(x-a)(a>0).

  • 916
  • 917
  • 918
  • 919
  • 920
  • 921
  • 922
  • 923
  • 924
  • 925
  • 926

热门问题

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 求由方程xy^2+e^2+e^y+sin(y)=0所确定的隐函数的导数xy^2+e^2+e^y+sin(y)=0

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 例2 解不等式 |3x-1|leqslant 2.

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 下列命题中错误的是( )A B C D

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号