12.已知函数 f(x)= ) x-3,xlt 0 0,xlt 0 (2)^x,xgt 0f(x)= ()-|||-A. -3 B.1 C.0 D.不存在
9.设a_(n)=int_(0)^1x^nsqrt(1-x^2)dx,b_(n)=int_(0)^(pi)/(2)sin^ntdt,则极限lim_(ntoinfty)[((n+1)a_(n))/(b_(n))]^n=( ).A.0 B.e C.e^-1 D.+∞
例1 利用定积分定义求下列极限:-|||-(1) lim _(narrow infty )dfrac (1)({n)^2}(sqrt [3]({n)^2}+sqrt [3](2{n)^2}+... +sqrt [3]({n)^3})
y=sinx的定义域和值域
(2021 浙江 A 63)某工厂有甲、乙两个生产车间,每个工人的生产效率都相同。甲车间的总生产效率是乙车间的 1.5 倍;从甲车间调派 30 名工人到乙车间之后,甲车间的生产效率是乙车间的 1.2 倍。问需要从甲车间再调多少名工人到乙车间,两个车间的生产效率才能相同?A. 20B. 22C. 24D. 25
(单选题)(2分) ( ) . I=int_(-1)^1x^2(1+sin^3x)dx= A. -1 B. 1 C. (1)/(3) D. (2)/(3)
设四元齐次方程组(Ⅰ)为 2x1+3x2−x3=0 x1+2x2+x3−x4=0 ,且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 α1 =(2,-1,a+2,1)T, α2 =(-1,2,4,a+8)T. (1)求方程组(Ⅰ)的一个基础解系; (2)当a为何值时,方程组(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时,求出全部非零公共解.
求函数 (x)=(x)^2 在(1,1)处的切线方程和法线方程.
[题目]求 lim _(xarrow 0)dfrac ({e)^x-sin x-1}(1-sqrt {1-{x)^2}}
'=cos (x+y).
热门问题
【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4 B. 1, 2, 3, 5 C. 1, 2,4, 5 D. 1,3, 4, 5
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
十六进制数3A.B对应的八进制数是()
11.当 k=() () 时,函数 f(x)= ) (e)^x+2,xneq 0 k, x=0 . 在 x=0 处连续.-|||-A.0 B.1 C.2 D.3
下列哪项不是命题() A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111 B. 000-010-001-101-111 C. 000-100-110-111 D. 000-001-011-111
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
求定积分(int )_(0)^1((3x-2))^4dx
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
下列哪项不是命题() A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4