练习2 (2021.1)证明r[}A&OBA&A^T]=2r(A).
[题目]证明方程 =asin x+b(agt 0,bgt 0) 至少有一-|||-个不超过 a+b 的正根。
16.两台车床加工同样的零件,第一台出现不合格品的概率是0.03,第二台出现不合格品的概率是0.06,加工出来的零件放在一起,并且已知第一台加工的零件数比第二台加工的零件数多一倍.(1)求任取一个零件是合格品的概率;(2)如果取出的零件是不合格品,求它是由第二台车床加工的概率.
做一系列独立试验,每次成功的概率为0.3,则试验进行到第5次首次获得成功的概率为____;若假设试验进行到成功两次就停止,正好在第5次停止的概率为____.(保留三位有效数字)A. 0.072或0.123B. 0.043或0.127C. 0.082或0.153D. 0.051或0.143
求指导本题解题过程,谢谢您!练习 已知λ1,λ2是矩阵A不同的特征值,a1,a2是特征值λ1的线性无-|||-关的特征向量,β是特征值λ2的特征向量.证明α1,α2,β线性无关.
【多选题】F1(x)与F2(x)为分布函数,请选出以下哪些不是分布函数?A. F1(x) + F2(x) B. 0.2F1(x) + 0.8F2(x) C. F1(x) - F2(x) D. F1(x) × F2(x)
设A是n阶矩阵,经若干次矩阵的初等变换得到矩阵B,那么( ).A. 必有|A|=|B|B. 必有|A|≠|B|C. 若|A|>0,则|B|>0D. 若|A|=0,则|B|=0
[二十二]一学生接连参加同一课程的两次考试。第一次及格的概率为P,若第一次及格则第二次及格的概率也为P;若第一次不及格则第二次及格的概率为(1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率。(2)若已知他第二次已经及格,求他第一次及格的概率。
6.求下列极限:-|||-lim _(xarrow 0)dfrac (ln ({sin )^2x+(e)^x)-x}(ln ({e)^2x-(x)^2)-2x}
从所给四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:A B C D
热门问题
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
请输入答案。3+5=( )
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
求定积分(int )_(0)^1((3x-2))^4dx
[题目]请输入答案.-|||-3+5=()
2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234; (2)4132;(3)3421; (4)2413;(5)13 ... (2n-1)24 ... (2n); (6)13 ... (2n-1)(2n)(2n-2) ... 2.
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
61.已知某K进制数为42.5,下列数值中K不可能取 __ o-|||-A.3 B.4 C.5 D.6
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
.如果行列式 D= |} (a)_(11)& (a)_(12)& (a)_(13) (a)_(21)& (a)_(22)& (a)_(23) (a)_(31)& (a)_(32)& (a)_(33) | .-|||-(A)3D-|||-B -3D-|||-27D-|||-D -27D