logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subject-activeicon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
  • 医学医学
  • 政治学政治学
  • 管理管理
  • 计算机计算机
  • 教育教育
  • 数学数学
  • 艺术艺术

某电子设备制造厂所用的元件是由三家元件制造厂提供的.根据以往的记录有以下的数据: 元件制造厂 次品率 提供元件的份额 Ⅰ 0.02 0.15 Ⅱ 0.01 0.80 Ⅲ 0.03 0.05 设这三家工厂的产品在仓库中是均匀混合的,且无区别的标志.(1)在仓库中随机地取一只元件,求它是次品的概率;(2)在仓库中随机地取一只元件,若已知取到的是次品,为分析此次品出自何厂,需求出此次品由三家工厂生产的概率分别是多少.试求这些概率.

求曲线 y = x^2 与直线 y = 3x + 4 围成的平面图形的面积.

例6.2.分别计算由曲线 =(x)^2(0leqslant xleqslant 1) ,直线 y=1 与y轴围成的-|||-平面图形绕x轴和y轴旋转一周所成的旋转体的体积V和V

4.设某一工厂有A,B,C三间车间,它们生产同一种螺钉,各个车间的产量分别占该厂生产螺钉 总产量的25%,35%,40%,各个车间生产的螺钉中次品的百分比分别为5%,4%,2%.如果从全厂总产 品中抽取一件产品,(1)求抽到的产品是次品的概率;(2)已知得到的是次品,求它依次是车间A,B, C生产的概率.

(1)0 1 1 1-|||-1 0 1 1-|||-1 1 0 1-|||-1 1 1 0(2)0 1 1 1-|||-1 0 1 1-|||-1 1 0 1-|||-1 1 1 0(3)0 1 1 1-|||-1 0 1 1-|||-1 1 0 1-|||-1 1 1 0

2/20 单选题 关于二元函数z=f(x,y) 在一点处连续、可导及可微的关系,下列说法正确的是()。A. 若函数z=f(x,y)在一点处连续,必该点处两个偏导数都存在;B. 若函数z=f(x,y)在一点处可微,必在该点处两个偏导数都存在.C. 若函数z=f(x,y)在一点处两个偏导数都存在,必在该点处可微;D. 若函数z=f(x,y)在一点处两个偏导数都存在,必在该点处连续;

1.二次型f(x_(1),x_(2))=x_(1)^2+4x_(1)x_(2)+3x_(2)^2的矩阵是().A. (}1&-11&3)

1.利用对角线法则计算下列三阶行列式:-|||-2 1 5-|||-(1) -1 0 2 ;-|||-3 1 4-|||-a b c-|||-(2) c a b-|||-b c a-|||-1 a a^2-|||-(3) 1 b b^2 ;-|||-1 c c-|||-x y x+y-|||-(4) y x+y x-|||-x+y x y

当 x arrow 0 时, 2x - x^2 与 x^2 - x^3 之间的关系是( )A. 2x - x^2 是较 x^2 - x^3 低阶的无穷小B. 等价无穷小C. 2x - x^2 是较 x^2 - x^3 高阶的无穷小D. 同阶但不是等价无穷小

求曲线y=x^2-2x,y=0,x=1,x=3所围成的平面图形绕y轴旋转一周所得旋转体的体积V.

  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57

热门问题

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 下列命题中错误的是( )A B C D

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号