(4)设A为三阶矩阵,且 |A|=2, 则 |(({A)^*)}^-1|=() .-|||-A. dfrac (1)(4) B.1 C.2 D.4
若_(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0只有零解,则_(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0必须满足()A._(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0且_(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0B._(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0且_(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0C._(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0且_(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0D._(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0且_(1)+((k)^2+1)(x)_(2)+2(x)_(3)=0-|||-_(1)+(2k+1)(x)_(2)+2(x)_(3)=0-|||-(x)_(1)+k(x)_(2)+(2k+1)(x)_(3)=0
7.设A为三阶矩阵,已知 |((2A))^-1|=dfrac (1)(2), 则 |A|= __ ;
函数f(x)=(x)/(x+1)的定义域是( )A. RB. (-∞,1)∪(1,+∞)C. (-1,0)D. (-∞,-1)∪(-1,+∞)
6.设二维随机变量(X,Y)的联合密度函数为 f(x,y)= ),0lt xlt 1,0lt ylt 1 0, . 求:-|||-(1)关于X及关于Y的边缘密度函数;
50、设 A、B、C 三个事件两两独立,则 A、B、C 相互独立的充分必要条件是()。A. A 与 BC 独立B. AB 与 A∪C 独立C. AB 与 AC 独立D. A∪B 与 A∪C 独立
单选题(2.0分)-|||-24.对任意实数x,都有()。 ()-|||-A |x|lt 0-|||-B |x|leqslant 0-|||-C |x|gt 0-|||-D |x|geqslant 0
1.求下列幂级数的收敛半径、收敛区间、收敛域.-|||-(1) sum _(n=1)^infty ((-1))^n-1dfrac ({x)^n}({n)^2}
若 n 阶 方阵 A 满足^2=A,其中 E 为 n 阶 单位方阵则下列表述中错误的是 ( ) A A 只 能为单位阵 B ^2=AC ^2=AD 如果 A 可逆,则 A 一定为单位阵 E A 可以只经过初等行变换变为单位 矩阵 E
随机事件 A,B 满足 (A)=P(B)=dfrac (1)(2), 且 (Acup B)=1, 则 (overline (A)cup overline (B))= __ .
热门问题
计算: (log )_(2)9cdot (log )_(3)4= __
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
请输入答案。3+5=( )
例2 解不等式 |3x-1|leqslant 2.
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
【填空题】sin dfrac (11)(6)pi =___.
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
试求出三次对称群-|||-._(3)=1(1) ,(12),(13),(23),(123),(132)}-|||-的所有子群.
下列命题中错误的是( )A B C D
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
与十进制[1]数 45.25 等值的十六进制[2]数是_____。