心形线x^2+y^2+x=sqrt(x^2)-y^(2)所围成区域的面积为() A. (1)/(2)piB. (3)/(2)piC. (5)/(2)piD. (7)/(2)pi
第一类曲线积分I=J |(z+1)^2ds,其中L是I=J |(z+1)^2ds 与平面I=J |(z+1)^2ds的交线, 则I=J |(z+1)^2ds( )A. I=J |(z+1)^2dsB. I=J |(z+1)^2dsC. I=J |(z+1)^2dsD. I=J |(z+1)^2ds
全微分方程 (x^2-y)dx-xdy=0 的通解为() A. (1)/(3)x^3+xy=CB. -(1)/(3)x^3-xy=CC. -(1)/(3)x^3+xy=CD. (1)/(3)x^3-xy=C
oint_(Gamma) zydx + 2xzdy + x^2dz 其中Gamma为有向闭折线ABCA,这里A、B、C依次为点(1, 0, 0),(0, 1, 0)和(0, 0, 2)。 A. -(1)/(3)B. -(2)/(3)C. -1D. -(4)/(3)
函数=x^3+y^3+z^3在曲线=x^3+y^3+z^3上点=x^3+y^3+z^3处沿曲线在该点的切线正方向的方向导数为( )=x^3+y^3+z^3
4.单选题(5分)-|||-7.5.56-|||-微分方程 ''+(y)^2=y'(e)^-2y 满足条件-|||-.y(0)=0 , y'(0)=-1-|||-的解为 ()-|||-A. =dfrac (1)(2)ln (1-2x)-|||-B. =dfrac (1)(2)ln (1+2x)-|||-C. =dfrac (1)(2)(e)^2x-dfrac (1)(2) .-|||-D. =dfrac (1)(2)-dfrac (1)(2)(e)^2x-|||-A A-|||-B B-|||-C C-|||-D D
39. 美术组同学以 70 米/分的速度从学校步行到公园写生。走了 12 分钟,正好比全程的一半多 150 米。此时他们离公园还有多少米?
参加全国大学生数学建模竞赛有专业限制么A 专业不限B 限制专业
设D: x^2 + y^2 leq 2x,由二重积分的几何意义知 iint_(D) sqrt(2x - x^2 - y^2) , dx , dy = ( ) A. (2)/(3) piB. (1)/(3) piC. D. (4)/(3) pi
iint (4(x)^3+6(y)^5+z)dv=( ) ,iint (4(x)^3+6(y)^5+z)dv=( )是由iint (4(x)^3+6(y)^5+z)dv=( )所围成。A.iint (4(x)^3+6(y)^5+z)dv=( )B.iint (4(x)^3+6(y)^5+z)dv=( )C.iint (4(x)^3+6(y)^5+z)dv=( )D.iint (4(x)^3+6(y)^5+z)dv=( )
热门问题
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
下列哪项不是命题() A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
求定积分(int )_(0)^1((3x-2))^4dx
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
十六进制数3A.B对应的八进制数是()
11.当 k=() () 时,函数 f(x)= ) (e)^x+2,xneq 0 k, x=0 . 在 x=0 处连续.-|||-A.0 B.1 C.2 D.3
【单选题】已知谓词公式(∀x)(∀y)(P(x, y)→Q(x, y)),将其化为子句集的结果正确的是A. S = (¬P(x,y)∨Q(x,y)) B. S = (¬P(x,y)Q(x,y)) C. S = (P(x,y) ꓦ Q(x,y)) D. S = (P(x,y)Q(x,y))
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111 B. 000-010-001-101-111 C. 000-100-110-111 D. 000-001-011-111
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4 B. 1, 2, 3, 5 C. 1, 2,4, 5 D. 1,3, 4, 5
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
下列哪项不是命题() A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
函数y=x2+2x-7 在区间( 内满足( ).. A.先单调下降再单调上升 B.单调下降 C.先单调上升再单调下降 D.单调上升正确
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]