(2025,2)设矩阵 }1&2&02&a&00&0&b 有一个正特征值和两个负特征值,则(A)a>4,b>0. (B)a<4,b>0.(C)a>4,b<0. (D)a<4,b<0.
[题目]证明方程 =asin x+b(agt 0,bgt 0) 至少有一-|||-个不超过 a+b 的正根。
3.某公司生产的某种化工原料的月平均价格X(单位:万元/公斤)和月销售量-|||-Y(单位:t)都是随机变量,其联合密度为-|||-f(x,y)= 24y(1-x) (0
集合(2,3,5)的子集有( )A. 5个B. 6个C. 7个D. 8个
设有甲、乙两袋,甲袋中装有n只白球m只红球,乙袋中装有N只白球M只红球,今从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,问取到(即从乙袋中取到)白球的概率是多少?
设A是n阶矩阵,经若干次矩阵的初等变换得到矩阵B,那么( ).A. 必有|A|=|B|B. 必有|A|≠|B|C. 若|A|>0,则|B|>0D. 若|A|=0,则|B|=0
用四个形状、大小完全相同的长方形拼成一个大长方形(如下图)。-|||-如果这个大长方形的周长是42千米,那么它的面积是多少平方千米?
[题目]已知 (x)=(log )_(2)x, 则f(16)的值是 () .-|||-A、1-|||-B、2-|||-C、4-|||-D、8
下列函数何处可导?何处解析?(1) f(z) = xy^2 + ix^2 y;(3) f(z) = x^3 - 3xy^2 + i(3x^2 y - y^3);
[题目]设函数f x)在 (-infty ,+infty ) 上有定义,在区间-|||-[0,2]上, (x)=x((x)^2-4), 若对任意的x都满足-|||-(x)=kf(x+2), 其中k为常数.-|||-(1)写出f(x)在 [ -2,0] 上的表达式;-|||-(Ⅱ)问k为何值时,f (x)在 x=0 处可导.
热门问题
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
.如果行列式 D= |} (a)_(11)& (a)_(12)& (a)_(13) (a)_(21)& (a)_(22)& (a)_(23) (a)_(31)& (a)_(32)& (a)_(33) | .-|||-(A)3D-|||-B -3D-|||-27D-|||-D -27D
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
请输入答案。3+5=( )
求定积分(int )_(0)^1((3x-2))^4dx
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234; (2)4132;(3)3421; (4)2413;(5)13 ... (2n-1)24 ... (2n); (6)13 ... (2n-1)(2n)(2n-2) ... 2.
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
[题目]请输入答案.-|||-3+5=()