在一个庞大的人脸库中,假设任意两张人脸属于同一个人的概率为0.01;同一-|||-个人的两张人脸差异很小的概率是0.9;不同人的两张人脸差异很小的概率-|||-是0.2;已知某两张人脸差异很小,那么请问:-|||-)这两张人脸属于同一个人的概率是多少?-|||-(2)你如何看待求得的数值?你觉得这数值如何发挥其作用?
8.设 =(x)^3+(y)^3+(z)^3-3xyz, 试问在怎样的点集上gradu分别满足:-|||-(1)垂直于z轴;-|||-(2)平行于z轴;-|||-(3)恒为零向量.-|||-9.设f(x,y)可微,l是R^2上的一个确定向量.倘若处处有 _(1)(x,y)=0, 试问此函数f有何特征?-|||-10.设f(x,y)可微,l1与l2是R^2上的一组线性无关向量.试证明:若 _(i)(x,y)=0(i=1,2), 则-|||-f(x,y)= 常数.
(本题满分10分)求曲线=(e)^-xsin x(xgeqslant 0)与x轴之间图形的面积。
下列等式成立的是(),其中a,b,c,d为常数. A. |a & b c & d|B. |a+b & 1 c+d & 1|C. |2a & 2b 2c & 2d|D. |a cdot b & 1 c cdot d & 1|
14.计算下列行列式:-|||-1 a1 0 0 0-|||--1 https:/img.zuoyebang.cc/zyb_a1ba310a0e07780ae8da18641bf0a900.jpg-(a)_(1) a2 ... 0 0-|||-0 -1 https:/img.zuoyebang.cc/zyb_a1ba310a0e07780ae8da18641bf0a900.jpg-(a)_(2) ... o o-|||-(5) ;-|||-: : :-|||-0 0 0 ... https:/img.zuoyebang.cc/zyb_a1ba310a0e07780ae8da18641bf0a900.jpg-(a)_(n-1) an-|||-o 0 0 -1 https:/img.zuoyebang.cc/zyb_a1ba310a0e07780ae8da18641bf0a900.jpg-(a)_(n)
证明序列傅里叶变换的下列性质: (1)x*(n)→X*(e^-jω) (2)x*(-n)→X*(e^jω) (3)Re[x(n)]→Xe(e^jω)
(1)(14分)求微分方程(x^3-y^2)dx+(x^2y+xy)dy=0,的通解。
单选设两个电子元件的寿命服从参数为λ =600的指数分布,且独立工作.现已知一个已使用了300小时,另一个元件尚未使用,若讨论二者还能再使用600小时的概率,则如下说法正确的是:()A 二者概率相等且不足1 / 2 B 第二个电子元件对应的概率较大C 二者概率相等且接近1 D 第一个电子元件对应的概率较大
若当x→0时sin[ln(1+x)]-sin[ln(1-x)]与xn是同阶无穷小,则n为()A. 1B. 2C. 3D. 4
10、 判断 任一方程组均可由克莱姆法则求解.
热门问题
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
请输入答案。3+5=( )
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
求定积分(int )_(0)^1((3x-2))^4dx
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
[题目]请输入答案.-|||-3+5=()
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234; (2)4132;(3)3421; (4)2413;(5)13 ... (2n-1)24 ... (2n); (6)13 ... (2n-1)(2n)(2n-2) ... 2.
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
.如果行列式 D= |} (a)_(11)& (a)_(12)& (a)_(13) (a)_(21)& (a)_(22)& (a)_(23) (a)_(31)& (a)_(32)& (a)_(33) | .-|||-(A)3D-|||-B -3D-|||-27D-|||-D -27D
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。