.一批晶体管共40只,其中3只是坏的,今从中任取 5只,求(1) 5只全是好的的概率;(2) 5只中有两只坏的的概率。
从 区间 ( 0.1 ) 内任取两个数,求这两个数的乘积小于 0.5 的概率_____.
在长度为20分钟的时间段内,有两个长短不等的信号随机地进入接收机,长信号持续时间为4分钟,短信号持续时间为2分钟.那么这两个信号互不干扰的概率为 ____ (结果请用小数表示).
[计算题]设随机变量X的概率密度有:-|||-[计算题]设随机变量X的概率密度有:-|||-f(x)= ^3sqrt {{x)^2}},1lt xlt 8 0, xin R .-|||-求(1)常数a;(2)分布函数F(x);(3) =3-x 求其-|||-概率密度f1(y)。
有两箱同种类的零件。第一箱装 50 只,其中 10 只一等品;第二箱装 30 只,其中 18 只一等品。今从两箱中任挑出一箱,然后从该箱中取零件两次,每次任取一只,作不放回抽样。试求 (1)第一次取到的零件是一等品的概率。 (2)第一次取到的零件是一等品的条件下,第二次取到的也是一等品的概率。
5.已知x的一次多项式-|||-|A|= |} 1& 1& 1& 1 1& 1& -1& -1 1& -1& 1& -1 x& -1& -1& 1 | . ,-|||-则该多项式的根为 () .-|||-(A)0; (B) -1 ; (C) -2 ; (D) -3 _
某演唱会主办方为观众准备了白红橙黄绿蓝紫7种颜色的荧光棒各若干只,每名观众可在入口处任意选取2只,若每种颜色的荧光棒都足够多,那么至少( )名观众中,一定有两人选取的荧光棒颜色完全相同。A. 14B. 22C. 28D. 29
一批产品共20件,其中有5件是次品,其余为正品.现从这20件产品中不放回地任意抽取三次,每次只取一件,求下列事件的概率: (1)在第一、第二次取到正品的条件下,第三次取到次品; (2)第三次才取到次品; (3)第三次取到次品.
用数列极限的定义证明:lim _(narrow infty )dfrac (3n+1)(2n+1)=dfrac (3)(2)-|||-__
16.一个人把六根草紧握在手中,仅露出它们的头和尾,然后随机地把六个头两两相接,六个尾-|||-也两两相接.求放开手后六根草恰巧连成一个环的概率.-|||-17.把n个"0"与n个"1"随机地排列,求没有两个"1"连在一起的概率.-|||-18.设10件产品中有2件不合格品,从中任取4件,设其中不合格品数为X,求X的概率分布.-|||-19.n个男孩,m个女孩 (mleqslant n+1) 随机地排成一排,试求任意两个女孩都不相邻的概率.-|||-20.将3个球随机地放入4个杯子中去,求杯子中球的最大个数X的概率分布.-|||-21.将12个球随机地放入3个盒子中,试求第一个盒子中有3个球的概率.-|||-22.将n个完全相同的球(这时也称球是不可辨的)随机地放入N个盒子中,试求:
热门问题
[题目]请输入答案.-|||-3+5=()
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
公式(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 中,(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( ), (forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] 的辖域为( )。A.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] B.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] C.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ] D.(forall x)[ P(x)在Q(x,A)arrow (exists y)[ R(x,y)cup S(y)] ]
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
已知某个一次函数的图象与x轴、y轴的交点坐标分别是(−2,0)、(0,4),求这个函数的解析式.
求下列极限: lim _(xarrow alpha )dfrac (sin x-sin alpha )(x-alpha );
请输入答案。3+5=( )
求定积分(int )_(0)^1((3x-2))^4dx
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
下列各进制数中,数值最大的是A.2B.1HB.34.5DC.123.45QD.110.11B
.如果行列式 D= |} (a)_(11)& (a)_(12)& (a)_(13) (a)_(21)& (a)_(22)& (a)_(23) (a)_(31)& (a)_(32)& (a)_(33) | .-|||-(A)3D-|||-B -3D-|||-27D-|||-D -27D
判定下列级数的收敛性: (1)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (2)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (3)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (4)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (5)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···; (6)dfrac (3)(4)+2((dfrac {3)(4))}^2+3((dfrac {3)(4))}^3+... +n((dfrac {3)(4))}^n+... )^n+···.
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
十进制[1]数17转换为八进制[2]为()。A.18B.19C.20D.21
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1234; (2)4132;(3)3421; (4)2413;(5)13 ... (2n-1)24 ... (2n); (6)13 ... (2n-1)(2n)(2n-2) ... 2.