[题目]-|||-设 lim _(xarrow infty )((dfrac {x+2a)(x-a))}^x=8 且 a≠0, 求常数a的值.
(5)已知积分区域 = (x,y)||x|+|y|leqslant dfrac {pi )(2)} _(1)=iint sqrt ({x)^2+(y)^2}dxdy _(2)=iint sin sqrt ({x)^2+(y)^2}dxdy,-|||-_(3)=iint (1-cos sqrt ({x)^2+(y)^2})dxdy, 试比较I1,I2,I3的大小 ()-|||-(A) _(3)lt (I)_(2)lt (I)_(1) (B) _(1)lt (I)_(2)lt (I)_(3) (C) _(2)lt (I)_(1)lt (I)_(3) (D) _(2)lt (I)_(3)lt (I)_(1)
判断下列函数的奇偶性-|||-(1) (x)=x(sin )^2x:-|||-(2) (x)=xsin (x)^2-|||-(3) (x)=sin (arctan x)-|||-(4) (x)=dfrac ({x)^3cos ((x)^3)}(1+{x)^2}
函数f(x)=2x3-3x2的单调递减区间为( ).A. (-∞,0]B. [0,1]C. [1,2]D. [2,+∞)
【题目】求由方程 x-y+1/2siny=0 所确定的隐函数的二阶导数(d^2y)/(dx^2)
[题目]求函数 =2sin 3x, .in [ -dfrac (pi )(6),dfrac (pi )(6)] 的反函-|||-数.
2.当 arrow 0 时,若 lim _(xarrow 0)dfrac (sqrt [4]{x)+sqrt [3](x)}({x)^k}=A(Aneq 0), 则 = __
设[x]是表示不超过x的最大整数,则 =x-[ x] 是 __-|||-(A)无界函数 (B)周期为1的周期函数 (C)单调函数 (D)偶函数
设Dk是圆域 = (x,y)|{x)^2+(y)^2leqslant 1} 位于第k象-|||-限的部分, _(k)=(iint )_(k)(y-x)dxdy(k=1,2,3,4), 则_ __-|||-A. _(1)gt 0 B. _(2)gt 0 C. _(3)gt 0 D. _(4)gt 0
今年考题 (2025,1)设n阶矩阵A,B,C满足r(A)+r(B)+r(C)=r(ABC)+2n.则下面4个结论中一定正确的是 ①r(ABC)+n=r(AB)+r(C). ②r(AB)+n=r(A)+r(B). ③r(A)=r(B)=r(C)=n. ④r(AB)=r(BC)=n. (A.)①②. (B.)①③. (C.)②④. (D.)③④.
热门问题
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
求由方程xy^2+e^2+e^y+sin(y)=0所确定的隐函数的导数xy^2+e^2+e^y+sin(y)=0
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
计算: (log )_(2)9cdot (log )_(3)4= __
下列命题中错误的是( )A B C D
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
例2 解不等式 |3x-1|leqslant 2.
【填空题】sin dfrac (11)(6)pi =___.
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.