考前复习通过考试的概率是0.7,不复习通过考试的概率是0.3,若一考生考试通过概率为0.5, 设其考前复习的概率为P,则P= ().0.30.40.50.512
甲、乙两艘油轮驶向一个不能同时停泊两艘油轮的码头,它们都将在某日8时至20时抵达码头,甲轮卸完油要1小时,乙轮要2小时,假设毎艘油轮在8时至20时的毎一时刻抵达码头的可能性相同。求: 1.甲、乙两轮都不需要等候空出码头的概率; 2.设A表示甲、乙同一时刻抵达码头,问A是否为不可能事件,并求P(A)。
某仪器装有三只独立工作的同型号电子元件,其寿命 ( 单位:小时 ) 都服从同一指数分布,概率密度为f(x)= {e)^-dfrac (x{600)}xgt 0 0 xleqslant 0 .。
(1)给出事件A、B的例子,使得(i)P(A B)<P(A),(ii)P(A B)=P(A) (iii)P(A B)>P(A)(2)设事件A、B、C相互独立,证明:(i)C与AB相互独立 (ii)C与AB相互独立。(3)设事件A的概率P(A)=0,证明对于任意另一事件B,有A、B相互独立。(4)证明事件A、B相互独立的充要条件是P(A B)=P(A B)
设顾客在某银行的窗口等待服务的的时间X(以分计)服从参数 theta =5 (即 lambda =dfrac (1)(5)) 的指数分-|||-布,某顾客在窗口等待服务,若超过10分钟,他就离开。则该顾客在窗口未等到服务而-|||-离开的概率为 () ()-|||-A. https:/img.zuoyebang.cc/zyb_4b57ab27de5927fea339982b381005e7.jpg-(e)^-5-|||-B. ^-5-|||-C. https:/img.zuoyebang.cc/zyb_4b57ab27de5927fea339982b381005e7.jpg-(e)^-2-|||-D. ^-2
6.确定a,b的值使下列非齐次线性方程组有解,并求其解.-|||-(1) ) a(x)_(1)+b(x)_(2)+2(x)_(3)=1 (b-1)(x)_(2)+(x)_(3)=0 a(x)_(1)+b(x)_(2)+(1-b)(x)_(3)=3-2b .
行列式 |_(3)(a)_(6)-(a)_(2)(a)_(4)(a)_(5) (B) _(2)(a)_(4)(a)_(5)-(a)_(2)(a)_(3)(a)_(6)-|||-(C) _(1)(a)_(3)(a)_(6)-(a)_(2)(a)_(4)(a)_(5) (D) _(3)(a)_(6)(a)_(8)-(a)_(4)(a)_(5)(a)_(8)
例3.14 设向量组a1,a 2,a3线性相关,向量组α2,α3,α4线性无关.问-|||-(1)α1能否由α2,a3线性表示?(2)a4能否由α1,a2,a3线性表示?
1.设随机事件A与B互不相容,则( ). (A)P(overline(AB))=0; (B)P(AB)=P(A.)P(B.); (C.)P(A)=1-P(B); (D.)P(overline(A)cupoverline(B))=1.
求下列行列式的值 3 2 2 ...2-|||-2 3 2 ... ... 2-|||-2 2 3 ... ... 2-|||-2 2 2 3.
热门问题
12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)
从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
下列命题中错误的是( )A B C D
【填空题】sin dfrac (11)(6)pi =___.
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
计算: (log )_(2)9cdot (log )_(3)4= __
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.