下列函数中既是奇函数,又是单调增加的是(A. sin^3xB. x^3+1C. x^3+xD. x^3-x
((1-sqrt {3)i)}^10的值为( )A.((1-sqrt {3)i)}^10B.((1-sqrt {3)i)}^10C.((1-sqrt {3)i)}^10D.((1-sqrt {3)i)}^10
6.计算下列n阶行列式的值:-|||-x y 0 ... 0 0-|||-0 x y 0 0-|||-(1)-|||-0 0 0 x y-|||-y 0 0 0 x
[题目]12名新生中有3名优秀生,将他们随机地-|||-平均分配到3个班中去,-|||-(1)每班各分配到一名优秀生的概率;-|||-(2)3名优秀生分配到同一个班的概率.
1.5 将圆周方程 ((x)^2+(y)^2)+bx+cy+d=0 (aneq 0) 写成复数形式(即用z-|||-与z来表示,其中 =x+iy).
设第一只盒子中装有3只蓝色球,2只绿色球,2只白色求,第二只盒子中装有2只蓝色球,3只绿色球,4只白色球,独立地分别在两只盒子中各取一只球。(1)求至少有一只蓝色球的概率;(2)求有一只蓝色球,一只白色球的概率;(3)已知至少有一只蓝色球,求有一只蓝色球、一只白色球的概率.
2.计算下列行列式.-|||--ab ac ae-|||-(3) bd -cd de-|||-bf cf -ef
所必需的.-|||-作为一本最优化方法的教科书,本章的51.4用于介绍一般最优化方法的基-|||-本特征和要求,以后各章节的各式各样的最优化方法大部分都具有这些特征,对-|||-于现实生活中的大量最优化问题,一般不可能直接给出问题的具有解析表达式-|||-的解,确定问题的最优解一般采用迭代法,即从一个给定的初始点开始,方法逐-|||-步产生一个越来越接近最优解的点的序列,并在一定的条件得到满足时取相应-|||-的迭代点作为所求最优解的一个近似.我们在这一节给出了一般方法的选代格-|||-式,评价一个点好坏的准则和方法、终止迭代的准则、衡量一个方法性能的收敛-|||-性(包括局部收敛性和全局收敛性)和收敛速度.-|||-1.考虑由约束-|||-({x)_(1)}^2+({x)_(2)}^2leqslant 1, https:/img.zuoyebang.cc/zyb_de1ef7ba1d35a914d4b115f292dcef36.jpg-(x)_(2)+(x)_(1)geqslant 0 , _(1)leqslant 0-|||-确定的可行城F.判定点 ^(1)=((-dfrac {1)(2),dfrac (1)(2))}^x ^(2)=((-1,1))^T ^(3)=((-1,0))^T,-|||-^(4)=((0,-dfrac {1)(2))}^x 和 ^(5)=((-dfrac {1)(2),-dfrac (1)(2))}^x 是否是可行点?如果是可行点,是内点-|||-语是边形点?是哪个约束的边界点?-|||-2.考虑下述约束最优化问题-|||- )+(({x)_(2)-2)}^2leqslant 3 ({x)_(1)}^2geqslant 1 CF,
袋中有10个零件,其中3个合格7个不合格,先后两次从中各取一个 ( 不放回 ) ,则第二次取到合格零件的概率为( ).A. dfrac (2)(9) B. dfrac (2)(9) C. dfrac (2)(9)D. dfrac (2)(9)
6.证明:点列(Pn(xn,yn)收敛于P0 (x0,y0)的充要条件是 lim {x)_(n)=(x)_(0) 和 lim (y)_(n)=(y)_(0).
热门问题
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
【填空题】sin dfrac (11)(6)pi =___.
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
计算: (log )_(2)9cdot (log )_(3)4= __
12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)
下列命题中错误的是( )A B C D
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。